K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

1)3x4-5x3y+6x2-10xy+2

=(3x4-5x3y)+(6x2-10xy)+2

=x3(3x-5y)+2x(3x-5y)+2

=x3.0+2x.0+2

=0+0+2

=2

2) x5-2010x4+2010x3-2010x2+2010x-2020

=x5-(2009+1)x4+(2009+1)x3-(2009+1)x2+(2009+1)x-2009-11

=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-x-11

=x5-x5-x4+x4+x3-x3-x2+x2+x-x-11

=-11

18 tháng 3 2018

2, Với x= 2009 => 2010=x+1

=> \(x^5-2010\text{x}^4+2010\text{x}^3-2010\text{x}^2+2010\text{x}-2020=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2020\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)

\(=x-2020\)

\(=2009-2020\\ =-11\)

6 tháng 3 2022

( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)

6 tháng 2 2020

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

6 tháng 2 2020

Thông cảm máy chụp đểu

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

8 tháng 4 2021

Ta có: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}\ge0\\\left(3y+4\right)^{2022}\ge0\end{cases}}\left(\forall x,y\right)\)

\(\Rightarrow\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\ge0\left(\forall x,y\right)\)

Mà theo đề bài ta có: \(\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\le0\)

Nên từ đó suy ra: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}=0\\\left(3y+4\right)^{2022}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2021x-1=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2021}\\y=-\frac{4}{3}\end{cases}}\)

Khi đó \(M=2021\cdot\frac{1}{2021}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)

\(=-\frac{4}{3}-\frac{16}{9}=-\frac{28}{9}\)

19 tháng 2 2022

a, \(A=\left(x+2y\right)^2-x+2y\)

Thay x = 2 ; y = -1 ta được 

\(A=\left(2-2\right)^2-2-2=-4\)

b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)

Thay x = 1 vào B ta được \(B=3+8-1=10\)

c, Thay x = 1 ; y = -1 ta được 

\(C=3,2.1.\left(-1\right)=-3,2\)

d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được 

\(D=3.9-5\left(-1\right)+1=27+5+1=33\)

19 tháng 2 2022

thay x=2,y=-1 vào biểu thức A ta có;

 A=(2+2.(-1)^2-2+2.(-1)

A=(2+-2)^2-2+-2

A=0-2+-2

A=-4

b)

 (x^2+4)(x-1)=0

 suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)

(+)x-1=0

    x   =1

thay x=1 vào biểu thức B ta có;

B=3.1^2+8.1-1

B=3.1+8-1

B=3+8-1

B=10

c)thay x=1 và y=-1 vào biểu thức C ta có;

C=3,2.1^5.(-1)^3

C=3,2.1.(-1)

C=(-3,2)

d)giá trị tuyệt đối của 3=3 hoặc (-3)

TH1;thay x=3:y=-1 vào biểu thức d ta có;

D=3.3^2-5.(-1)+1

D=3.9-(-5)+1

D=27+5+1

D=33

 

    

23 tháng 12 2016

Ta có:

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)

\(\Rightarrow\left|x-1\right|=0\)\(\left(y+2\right)^{20}=0\)

+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)

+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)

\(\Rightarrow C=2x^5-5y^3+2015\)

\(=2.1^5-5.\left(-2\right)^3+2015\)

\(=2-\left(-40\right)+2015\)

\(=2057\)

Vậy C = 2057

23 tháng 12 2016

Cảm ơn bạn nhiều lắm vui