- C = \(\frac{83}{41}\)
- D = \(\frac{-79}{90}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=0.5+1/3+0.4+5/7+1/6-4/35+1/41
C=1/2+1/3+2/5+5/7+1/6-4/35+1/41
C=(1/2+1/6+1/3)+(2/5+5/7-4/35)+1/41
C=1+1-1/41
C=2-1/41
=>C=81/41
D=1/90-1/72-1/56-1/42-1/30-1/20--1/12-1/6-1/2
=> D=1/9*10-1/8*9-1/7*8-1/6*7-1/5*6-1/4*5-1/3*4-1/2*3-1/1*2
=>D=-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=>D=-(1-1/10)
=>D=-9/10
ai k mh mh k lại
\(C=0,5+\frac{1}{3}+0,4+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{5}+\frac{1}{6}\right)+\left(\frac{5}{7}-\frac{4}{35}\right)+\frac{1}{41}\)
\(=\frac{15+10+12+5}{30}+\frac{25-4}{35}+\frac{1}{41}\)
\(=\frac{7}{5}+\frac{3}{5}+\frac{1}{41}\)
\(=2+\frac{1}{41}=\frac{83}{41}\)
\(D=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\left(\frac{1}{90}-\frac{1}{30}-\frac{1}{6}-\frac{1}{2}\right)+\left(-\frac{1}{72}-\frac{1}{12}\right)-\frac{1}{56}-\frac{1}{42}\)
\(=\frac{1-2-15-45}{90}+\frac{-1-6}{72}-\frac{1}{56}-\frac{1}{42}\)
\(=-\frac{61}{90}-\frac{7}{72}-\frac{1}{56}-\frac{1}{42}\)
\(=\frac{-1708-245-45-60}{2520}\)
\(=-\frac{49}{60}\)
Nghịch đảo của C là \(\frac{41}{83}\), nghịch đảo của D là \(-\frac{60}{49}\)
\(\frac{41}{83}\cdot\left(-\frac{60}{49}\right)=-\frac{2460}{4067}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
1-1/2+1/2-1/3+1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10-(1-1/3+1/3-3/5+3/5-4/7+5/9-5/9+6/11-6/11-7/13)=1+1/10-1+7/13=83/130
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{11.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=1-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{57}{130}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}-\frac{1}{3}-\frac{1}{15}-.....-\frac{1}{143}\)
\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{143}\right)\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{11.13}\right)\)
\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)\(=\left(\frac{1}{1}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{117}{130}-\frac{78}{130}=\frac{39}{130}=\frac{3}{10}\)