Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+\frac{2}{5}=1\)
b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{1}{3.2}-\frac{5.2}{7.3}\)
\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)
\(=\frac{7}{42}-\frac{20}{42}\)
\(=-\frac{13}{42}\)
a, \(5\dfrac{4}{13}.15\dfrac{3}{41}-5\dfrac{4}{13}.2\dfrac{3}{41}\)
\(=\left(15\dfrac{3}{41}-2\dfrac{3}{41}\right).\dfrac{69}{13}=\dfrac{13.69}{13}=69\)
b, \(\dfrac{2^3}{3^3}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.2017^0\)
\(=\dfrac{8}{27}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.1=\dfrac{1}{2}+\dfrac{2017}{2018}-\dfrac{1}{2}=\dfrac{2017}{2018}\)
c, \(3:\left(-\dfrac{3}{2}\right)^2+\dfrac{1}{9}.\sqrt{36}=3:\dfrac{9}{4}+\dfrac{1}{9}.6=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2017}\left(1+2+...+2017\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+....+\frac{1}{2017}.\frac{2017\left(2017+1\right)}{2}\)
\(=1+\frac{2.3}{2.2}+\frac{3.4}{3.2}+....+\frac{2017.2018}{2017.2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{2018}{2}\)
\(=\frac{2+3+4+...+2018}{2}\)
\(=\frac{\frac{2018\left(2018+1\right)}{2}-1}{2}\)
\(=1018585\)
\(A=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-2016}{2017}=\dfrac{1}{2017}\)
\(B=\dfrac{-3}{2}\cdot\dfrac{-4}{3}\cdot...\cdot\dfrac{-2018}{2017}=\dfrac{2018}{2}=1009\)
\(A\cdot B=\dfrac{1009}{2017}\)
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Bạn ơi cho mình hỏi tại sao đề bài câu c là -5/7 mà bn lm -7/5
a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)
b, c cùng 1 câu phải k
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)
A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)
NHA
HỌC TỐT
1, \(A=2.3^4+2^3=2\left(3^4+2^2\right)=2.85=170\)
2,\(=>9A=3^{13}+3^{15}+3^{17}+...+3^{25}\)
\(=>9A-A=3^{25}-3^{11}\)
\(=>A=\dfrac{3^{25}-3^{11}}{8}\)
Ta thấy : \(3^{25}=3.3^{4.6}=3\times.........1=...........3\)
Lại có: \(3^{11}=3^3.3^{4.2}=27\times.........1=.......7\)
=> \(=>3^{25}-3^{11}=....3-......7=.....6\)
Ta có: \(A=\dfrac{.............6}{8}=>A=.........2;A=.....7\)
Mà số chia hết cho 5 có tận cùng là 0 ; 5 nên => A không chia hết cho 5;
3,\(B=\dfrac{2017^{17}\left(2017^{2000}-1\right)}{2017^{2016}.2017^{2002}}\)
\(=>B=\dfrac{2017^{2000}-1}{2017^{2001}}\)
CHÚC BẠN HK TỐT....