K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2020

Để phân số\(\frac{3n+2}{7n+1}\)là phân số tối giản thì ƯCLN (3n + 2; 7n + 1) = 1

Bg (11)

Gọi a là ƯCLN (3n + 2; 7n + 1)  (a \(\inℕ^∗\))

=> 3n + 2 \(⋮\)a và 7n + 1 \(⋮\)a

=> 7(3n + 2) - 3(7n + 1) = 11 \(⋮\)a

=> a \(\in\)Ư (11)

Ư (11) = {1; 11)

Xét a = 11

=> 3n + 2 \(⋮\)11 và 7n + 1 \(⋮\)11

=> 7n + 1 - 2(3n + 2) = n - 3 \(⋮\)11

=> n = 11k + 3 (k \(\inℕ\))

Mà a phải = 1 nên n \(\ne\)11k + 3

=> n = 11k; n = 11k + 1; n = 11k + 2; n = 11k + 4; n = 11k + 5; n = 11k + 6; n = 11k + 7; n = 11k + 8; n = 11k + 9; n = 11k + 10.

Trong đời ai cũng sẽ có lúc sai...

10 tháng 7 2020

N:2,3,5,6,8,9

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

19 tháng 2 2020

B = \(\frac{2n+9}{n+2}\)\(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)

B= \(\frac{2n+9+5n+17-3n}{n+2}\)

B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)

B= \(\frac{4n+9+17}{n+2}\)\(\frac{4n+26}{n+2}\)

Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2

=> n+2 \(⋮\)n+2

=> (4n+26) - 4(n+2)\(⋮\)n+2

=> 4n+26 - 4n - 8 \(⋮\)n+2

=> 18 \(⋮\)n+2

=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}

=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}

Vậy...

kết bạn mình nha