Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
5n+2+26.5n+82n+1=5n.25+26.5n+64.8n=5n(25+26)+64.8n=5n.51+64.8n=5n.59−8.5n+64.5n=5n.59+(64n−5n).8chia hết cho 59 (vì 64n−5nchia hết cho 64−5=59với mọi n).\(\Rightarrow\) ĐPCMAI ĐỌC ĐƯỢC NÓ LÀM ƠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN RẤT GẤP
CẢM ƠN TRƯỚC NHA
\(n^2+83n+2009\)là số chính phương thì \(4\cdot\left(n^2+83n+2009\right)\)cũng là số chính phương và ta đặt là \(p^2\)p nguyên.
\(p^2=4n^2+2\cdot2n\cdot83+83^2+4\cdot2009-83^2=\left(2n+83\right)^2+1147\)
\(\Leftrightarrow p^2-\left(2n+83\right)^2=1147\)
\(\Leftrightarrow\left(p-\left(2n+83\right)\right)\left(p+\left(2n+83\right)\right)=1147\)(1)
Suy ra \(p+2n+83\)là ước nguyên dương của 1147. Mà U+(1147) = {1;31;37;1147} nên
\(p+2n+83=1147\)
\(p-\left(2n+83\right)=1\)
=> \(2n+83=573\Rightarrow n=245\)
Kết luận, với n=245 thì \(n^2+83n+2009\)là số chính phương 2872.
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.