Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
a,n + 4 chia hết cho n
Ta có n chia hết cho n
=> 4 chia hết cho n
=> n thuộc { 1;2;4 }
b,Ta có 3n chia hết cho n
=> 7 chia hết cho n
=> n thuộc { 1;7 }
a, 6 chia hết cho n-2 => n-2 thuộc Ư(6)=(1,-1,2,-2,3,-3,6,-6)
hay n thuộc (3,1,4,0,5,-1,8,-4). Mà n thuộc Z
=> n= 3,1,4,0,5,-1,8,-4)
c, 4n+3 chia hết cho 2n+1 => 2(2n+1)+1 chia hết cho 2n+1
Mà 2(2n+1) chia hết cho 2n+1 => 1 chia hết cho 2n+1 hay 2n+1 thuộc Ư(1)=(1,-1)
=> n thuộc (0,-1)
Do n thuộc Z => n=0,-1
d, 3n+1 chia hết cho 11-n => -3(11-n)+34 chia hết cho 11-n
Mà -3(11-n) chia hết cho 11-n => 34 chia hết cho 11-n hay .........( làm tương tự câu c)
a) n-2 thuộc ước của 6
Ư (6)={+-1;+-2;+-3;+-6}
n-2=1 => n=3
n-2=-1 => n=1
n-2=2 => n=4
n-2=-2 => n=0
n-2=3 => n=5
n-2=-3 => n=-1
n-2=6 => n=8
n-2=-6 => n=-4
b) do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm
c) 4n-5 chia hết cho 2n-1
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
d) 3n+1 chia hết cho 11-2n
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n
a)\(\frac{27-5n}{n}=\frac{27}{n}-\frac{5n}{n}=\frac{27}{n}-5\)
\(\Rightarrow n\inƯ\left(27\right)=\left\{-27;-9;-3;-1;1;3;9\right\}\)
b)\(\frac{n+6}{n+2}=\frac{n+2+4}{n+2}=\frac{n+2}{n+2}+\frac{4}{n+2}=1+\frac{4}{n+2}\)
\(\Rightarrow n+2\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-6;-4;-3;-1;0;2\right\}\)
(n+6) chia hết cho (n+2)
=> (n+4+2) chia hết cho (n+2)
=> 4.(n+2) ( do n+2 chia hết cho n+2)
=> n+2 thuộc {1;4}
=> n thuộc {2}
Vậy n thuộc {2}