K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Để (d) và (d') song song 

khi 2m-1 = 3; và 1 khác -2 (luôn đúng)

<=> 2m=4 <=> m=2 (thỏa mãn)

Vậy m=2 thì (d) // (d')

Để 2 đường thẳng d và d' song song với nhau thì

\(\left\{{}\begin{matrix}m^2-3m+5=m+2\\m-1\ne5-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+3=0\\2m\ne6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m-3\right)=0\\m\ne3\end{matrix}\right.\)

\(\Leftrightarrow m=1\left(tm\right)\)

21 tháng 10 2021

b: Để (d)//(d') thì m+3=4

hay m=1

15 tháng 12 2016

Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)

a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)

Còn lại tương tự.

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)

Để N là điểm cố định thỏa mãn thì

\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.

Vậy không có điểm cố định.

26 tháng 12 2020

2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được: 

\(\left(m^2-2m+3\right)\cdot2-4=8\)

\(\Leftrightarrow2m^2-4m+6-4-8=0\)

\(\Leftrightarrow2m^2-4m-6=0\)

\(\Leftrightarrow2m^2-6m+2m-6=0\)

\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)

\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)

1: Thay x=1 và y=1 vào (d), ta được:

2m-1=-1

hay m=0