Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: TÌm GTNN của biểu thức
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\ge x-2013+0+2015-x=2\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x-2015\le0\\x-2014=0\\x-2013\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x=2014\\x\ge2013\end{cases}}\Rightarrow x=2014\)
Vậy với \(x=2014\) thì \(A_{Min}=2\)
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
\(|x-2013|;|x-2014|;|x-2015|\ge0;A_{min}\Leftrightarrow|x-2013|;|x-2014|;|x-2015|đạtGTNN\)
Mặt khác: \(x-2013|;|x-2014|;|x-2015|\)sẽ ko đồng thời=0
mà: 2015-2014=1;2014-2013=1
còn các th khác 2015-2013=2; 2014-2013=1
nên: \(A_{min}\Leftrightarrow|x-2014|đạtGTNN\Leftrightarrow x=2014\)
Vậy: Amin=2<=> x=2014
Bài 1:
Ta có: \(\sqrt{x}+\frac{9}{2}\)nhỏ nhất khi và chỉ khi \(\sqrt{x}\)nhỏ nhất
\(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0.
Khi đó M=\(\frac{9}{2}\)
⇒ M nhỏ nhất bằng \(\frac{9}{2}\)khi và chỉ khi x=0.
Bài 2:
Ta có:
\(N=\frac{1}{\sqrt{x}+3}\) lớn nhất khi và chỉ khi \(\sqrt{x}+3\) nhỏ nhất ⇒\(\sqrt{x}\)nhỏ nhất
Ta có: \(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0. Khi đó N=\(\frac{1}{3}\) ⇒ N lớn nhất bằng \(\frac{1}{3}\)khi và chỉ khi x=0.a)
\(A=\left|x-2013\right|+\left|2014-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2013\right|+\left|2014-x\right|\ge\left|x-2013+2014-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x\le2014\end{matrix}\right.\Rightarrow2013\le x\le2014.\)
Vậy \(MIN_A=1\) khi \(2013\le x\le2014.\)
Chúc bạn học tốt!
Mình cần gấp lắm, giúp mình với !!!!
1) B\(\ge\left|x-2013+2015-x\right|+\left|x-2014\right|\ge2\)
dấu bg xảy ra khi (x-2013)(2015-x)\(\ge\)0 và x-2014=0