K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Mình cần gấp lắm, giúp mình với !!!!

26 tháng 10 2016

1) B\(\ge\left|x-2013+2015-x\right|+\left|x-2014\right|\ge2\)

dấu bg xảy ra khi (x-2013)(2015-x)\(\ge\)0 và x-2014=0

21 tháng 3 2017

Sửa đề: TÌm GTNN của biểu thức 

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có: 

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x-2015\le0\\x-2014=0\\x-2013\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x=2014\\x\ge2013\end{cases}}\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{Min}=2\)

11 tháng 6 2015

x+2/2013+x+1/2014=x/2015+x-1/2016

7 tháng 4 2017

a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)

Lại có: \(\left|y+3\right|\ge0\forall y\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)

 \(\Rightarrow P_{MIN}=2011\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)

5 tháng 12 2018

tìm tất cả các số nguyên thỏa mãn :x+y/x^2-xy+y^2=3/7

5 tháng 12 2018

\(|x-2013|;|x-2014|;|x-2015|\ge0;A_{min}\Leftrightarrow|x-2013|;|x-2014|;|x-2015|đạtGTNN\)

Mặt khác: \(x-2013|;|x-2014|;|x-2015|\)sẽ ko đồng thời=0

mà: 2015-2014=1;2014-2013=1

còn các th khác 2015-2013=2; 2014-2013=1

nên: \(A_{min}\Leftrightarrow|x-2014|đạtGTNN\Leftrightarrow x=2014\)

Vậy: Amin=2<=> x=2014

19 tháng 3 2017

A:     GTLN : 1

        GTNN : 0

B:     GTLN : 1

        GTNN :0

19 tháng 3 2017

Làm thế nào bn

Giúp mình nhanh nhé, mai cô kt r

Ai bik ko trả lời với ạ

Bài 1:

Ta có: \(\sqrt{x}+\frac{9}{2}\)nhỏ nhất khi và chỉ khi \(\sqrt{x}\)nhỏ nhất

\(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0.

Khi đó M=\(\frac{9}{2}\)

⇒ M nhỏ nhất bằng \(\frac{9}{2}\)khi và chỉ khi x=0.

Bài 2:

Ta có:

\(N=\frac{1}{\sqrt{x}+3}\) lớn nhất khi và chỉ khi \(\sqrt{x}+3\) nhỏ nhất ⇒\(\sqrt{x}\)nhỏ nhất

Ta có: \(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0. Khi đó N=\(\frac{1}{3}\) ⇒ N lớn nhất bằng \(\frac{1}{3}\)khi và chỉ khi x=0.
12 tháng 2 2020

Cảm ơn bn nhìu!vui

5 tháng 12 2019

a)

\(A=\left|x-2013\right|+\left|2014-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2013\right|+\left|2014-x\right|\ge\left|x-2013+2014-x\right|\)

\(\Rightarrow A\ge\left|1\right|\)

\(\Rightarrow A\ge1.\)

Dấu '' = '' xảy ra khi:

\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x\le2014\end{matrix}\right.\Rightarrow2013\le x\le2014.\)

Vậy \(MIN_A=1\) khi \(2013\le x\le2014.\)

Chúc bạn học tốt!

5 tháng 12 2019

Còn nữa mà. Bạn làm nốt giúp mk luôn ikhihi