K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

a, 2009 - |x - 2009| = x 

=> |x - 2009| = 2009 - x 

=> x = 2009

11 tháng 6 2015

x+2/2013+x+1/2014=x/2015+x-1/2016

7 tháng 4 2017

a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)

Lại có: \(\left|y+3\right|\ge0\forall y\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)

 \(\Rightarrow P_{MIN}=2011\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)

a: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

b: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

a: \(\left(2x-3\right)^{2012}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y-z\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\\z=\dfrac{19}{10}\end{matrix}\right.\)

b: 2015-|x-2015|=x

=>|x-2015|=2015-x

=>x-2015<=0

hay x<=2015

d: |x-999|+|1998-2x|=0

=>x-999=0

hay x=999

1) Tìm  x, y, za) (x-3)(x-7)< 0                                          b) (x-8)x-1 - (x-8)x+21 = 0c) |x-2|-|2x+3|-x= 2                                    d) |x-7|+ 2x+5=6e) (3x-5)2006 + (y2 -1)2008 + (x-z)2100 =0      g) (2x-1)2008 + (y-2/5)2008 + |x+y-z|=02) Tìm số nguyên x, y, z biết:a) 42- 3|y-3| = 4(2012-x)4                                                      b) xy-2x+3y=11c) 25-y2 = 8(x-2009)2                                                            d) x2 +x-3x-3y+7=0e)...
Đọc tiếp

1) Tìm  x, y, z

a) (x-3)(x-7)< 0                                          b) (x-8)x-1 - (x-8)x+21 = 0

c) |x-2|-|2x+3|-x= 2                                    d) |x-7|+ 2x+5=6

e) (3x-5)2006 + (y-1)2008 + (x-z)2100 =0      g) (2x-1)2008 + (y-2/5)2008 + |x+y-z|=0

2) Tìm số nguyên x, y, z biết:

a) 42- 3|y-3| = 4(2012-x)4                                                      b) xy-2x+3y=11

c) 25-y= 8(x-2009)2                                                            d) x+x-3x-3y+7=0

e) 2xy+5x=3y+7=0                                                               g) x-2y=1

3) Cho P= |3x-3|+2x+1. Rút gọn P

4)Tìm GTLN của các biểu thức

a) A= 8-|2x+3|

b) B= 11-(2x-1)2 - |y+3|

c) C= \(\frac{2009}{\left|2x+1\right|+2010}\)

 

2
28 tháng 5 2015

a)(x-3)(x-7)<0

x-3<0 hoặc x-7<0

x<3    hoặc x <7

Vậy x<3 hoặc x<7

b)(x-8)x-1+(x-8)x+21=0

(x-8)x-1+(x-8)x+1.(x-8)20=0

(x-8)x-1.(1+(x-8)20)=0

(x-8)x-1=0 hoặc 1+(x-8)20=0

x-8=0        hoặc   (x-8)20   =-1(vô lí)

x=8

Vậy x=8

28 tháng 5 2015

nguyentuantai có giải đâu chứ!!! quá đáng

6 tháng 8 2016

a)

2009-|x-2009|=x

=> 2009-x=|x-2009|

=> 2009-x=|2009-x|

=> 2009-x=2009-x

vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài

b)

(2x-1)2008+(y-2/5)2008 +|x+y+z|=0

ta có: (2x-1)2008 luôn lớn hơn hoặc  bằng 0

(y-2/5)2008  luôn lớn hơn hoặc bằng 0

|x+y+z| luôn lớn hơn hoặc bằng 0

dấu "=" xảy ra khi 

2x-1=y-2/5=x+y+z=0

+2x-1=0=> 2x=1=> x=1/2

+y-2/5=0=> y=2/5

+x+y+z=0=> 1/2+2/5+z=0

=> z=-9/10