Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
a, Vì \(\left|x-\frac{2}{3}\right|\ge0\Rightarrow2\left|x-\frac{2}{3}\right|\ge0\Rightarrow B=2\left|x-\frac{2}{3}\right|-1\ge-1\)
Dấu "=" xảy ra khi \(2\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy MinB = -1 khi \(x=\frac{2}{3}\)
b, Vì \(\left|3x+8,4\right|\ge0\Rightarrow D=\left|3x-8,4\right|-14,2\ge-14,2\)
Dấu "=" xảy ra khi |3x - 8,4| = 0 => x = 2,8
Vậy MinD = -14,2 khi x = 2,8
c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(F=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\ge\left|2002-x+x-2001\right|=1\)
Dấu "=" xảy ra khi \(\left(2002-x\right)\left(x-2001\right)\ge0\Leftrightarrow-2001\le x\le2002\)
Vậy MinF = 1 khi \(-2001\le x\le2002\)
a) Vì \(\left|4,3-x\right|\ge0\Rightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu "=" xảy ra <=> \(\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
Vậy Amin = 3,7 khi và chỉ khi x = 4,3
b) Vì \(\left|3x+8,4\right|\ge0\Rightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu "=" xảy ra <=> \(\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=-2,8\)
Vậy BMin = -14 khi và chỉ khi x = -2,8
c) Vì \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu bằng xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}}\)
Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -1,5
d) D = |x-2018| + |x-2017| = |x-2018| + |2017-x| lớn hơn hoặc bằng |x-2018+2017-x| = |-1|=1
Dấu "=" xảy ra khi và chỉ khi (x-2018).(2017-x) lớn hơn hoặc bằng 0
(Tự giải ra)
Vậy DMin = 1 khi và chỉ khi ...
a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)
\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)
b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)
\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
a)A=3+|1-x|
Vì \(\left|1+x\right|\ge0\)
Suy ra:\(3+\left|1+x\right|\ge3\)
Dấu = xảy ra khi 1+x=0;x=-1
Vậy Min A=3 khi x=-1
b)B=|4,3-x|+3,7
Vì \(\left|4,3-x\right|\ge0\)
Suy ra:\(\left|4,3-x\right|+3,7\ge3,7\)
Dấu = xảy ra khi 4,3-x=0;x=4,3
Vậy Min B=3,7 khi x=4,3
C=2|3x+8,4|-14,2
Vì \(2\left|3x+8,4\right|\ge0\)
Suy ra:\(2\left|3x+8,4\right|-14,2\ge-14,2\)
Dấu = xảy ra khi 3x+8,4=0;x=-2,8
Vậy Min C=-14,2 khi x=-2,8
d)D=|x+1|+2|3x+8,4|-14,2
Vì \(\left|x+1\right|\ge0\)
\(2\left|3x+8,4\right|\ge0\)
Suy ra:\(\left|x+1\right|+2\left|3x+8,4\right|-14,2\ge-14,2\)
Dấu = xảy ra khi x+1=0;x=-1
3x+8,4=0;x=-2,8
Vậy Min D=-14,2 khi x=-2,8;-1