Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Cho chia hết cho 9. giá trị là gì?
Câu 2: Có bao nhiêu phần tử của tập A chia hết cho 9?
Câu 3: A là một tập hợp các bội số của 12 ít hơn 12. Làm thế nào nhiều yếu tố không tập A có?
Câu 4: Tìm dư khi chia cho 3. Câu 5: Cho rằng 511 là tổng của hai số nguyên tố và,. giá trị là gì?
Câu 6: Cho rằng. Tìm giá trị của.
Câu 7: Cho rằng. không số A có bao nhiêu ước?
Câu 8: Tìm số tự nhiên vì thế sản phẩm và 5 là số nguyên tố.
Câu 9: Cho rằng. không số A có bao nhiêu ước?
Câu 10: Cho rằng. Một số có bao nhiêu ước?
Câu 1: Given that is divisible by 9. What is the value of ?
Câu 2: How many elements of the set A are divisible by 9?
Câu 3:A is a set of multiples of 12 less than 12. How many elements does the set A have?
Câu 4:Find the remainder when is divided by 3.
Câu 5:Given that 511 is the sum of two prime numbers and , . What is the value of ?
Câu 6:Given that . Find the value of .
Câu 7:Given that . How many divisors does the number A have?
Câu 8:Find the natural number so that the product of and 5 is a prime number.
Câu 9:
Given that . How many divisors does the number A have?
Câu 10:
Given that . How many divisors the number A have?
Exer 1:
Trả lời:
The sum of dividend and divisor are:
195 - 3 = 192
Because the quotient is 6.
The divisor is:
(192-3) : (6+1) = 27
The dividend is:
192 - 27 = 165
Exer 2:
Trả lời:
Let three unknow numbers be: n, n + 1, n + 2.
Because n has three forms: 3k, 3k + 1, 3k + 2.
+) If n
Xin lỗi, mình vẫn chưa viết xong, rồi mình viết tiếp đây:
+) If n = 3k then there is only n divisibles by 3.
+) If n = 3k + 1 then there is only n + 2 divisibles by 3.
+) If n = 3k + 2 then there is only n + 1 divisibles by 3.
Thus, amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.
Exer 3:
Trả lời:
When we written the opposite respectively of n, we obtain \(\overline{1ba1}\).
We have:
\(\overline{1ab1}\) + \(\overline{1ba1}\) = (1000 + 100a + 10b + 1) - (1000 + 100b + 10a + 1)
= 90a - 90b
= 90(a - b)\(⋮\) 90
Thus, the difference of n and m which divisibles by 90.
Call a is the 3-digit number which divied by 57, the remainder is 27, divided by 217, the remainder is 60.
\(\Rightarrow\)a-27\(⋮\)57
\(\Rightarrow\)a-60\(⋮\)217
Because 684 is a multiple of 57 so:
\(\Rightarrow\)a-27-684\(⋮\)57\(\Rightarrow\)a-771\(⋮\)57
Because 651 is a multiple of 217 so:
\(\Rightarrow\)a-60-651\(⋮\)217\(\Rightarrow\)a-771\(⋮\)217
\(\Rightarrow\)a-771 \(\in\)CM(217;57)
\(\Rightarrow\)a-771\(\in\){0;12369;...}
\(\Rightarrow\)a\(\in\){771;13140;...}
Because a is a 3-digit number so a = 771.
The number is 771.