Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a: \(A=4x-3x^2+20-15x-9x^2-12x-4+\left(2x+1\right)^3-\left(8x^3-1\right)\)
\(=-12x^2-23x+16+8x^3+12x^2+6x+1-8x^3+1\)
\(=-17x+18\)
Bài 3:
\(\Leftrightarrow x^3+64-x^3+25x=264\)
hay x=8
\(1,C=6x^2+23x-55-6x^2-23x-21=-76\\ 2,=\left(2x^4-x^2+2x^3-x-6x^2+6-3\right):\left(2x^2-1\right)\\ =\left[\left(2x^2-1\right)\left(x^2+x-6\right)-3\right]:\left(2x^2-1\right)\\ =x^2+x-6\left(dư.-3\right)\\ 3,\Leftrightarrow x^3+64-x^3+25x=264\\ \Leftrightarrow25x=200\Leftrightarrow x=8\)
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
a) \(\left(x+3\right)\left(x-1\right)-x\left(x-5\right)=x^2+2x-3-x^2+5x=7x-3\)
b) \(\left(2x-3\right)\left(2x+3\right)-4\left(x+2\right)^2=4x^2-9-4x^2-16x-16=-16x-25\)
c) \(=x^3-3x^2+3x-1-x^3-8+3x^2=3x-9\)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
\(\left(2x-1\right)\left(1+2x\right)-3\left(x-3\right)^2-\left(2+x\right)^2\)
\(=\left(2x-1\right)\left(2x+1\right)-3\left(x^2-6x+9\right)-\left(4+4x+x^2\right)\)
\(=4x^2-1-3x^2+18x-27-4-4x-x^2\)
\(=14x-32\)
Phần b ,c giải phương trình??
\(\left(2x-3\right)^2+\left(3-x\right)^2+2\left(3-x\right)\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3+2\left(3-x\right)\right)+\left(3-x\right)^2=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3+6-2x\right)+\left(3-x\right)^2=5\)
\(\Leftrightarrow3\left(2x-3\right)+9-6x+x^2=5\)
\(\Leftrightarrow6x-9+9-6x+x^2=5\)
\(\Leftrightarrow x^2=5\)
\(\Leftrightarrow x=\pm\sqrt{5}\)
\(\left(x+5\right)\left(5-x\right)+\left(2x-1\right)^2-\left(3x-1\right)\left(x+2\right)-7=0\)
\(\Leftrightarrow\left(5-x\right)\left(5-x\right)+4x^2-4x+1-\left(3x^2+6x-x-2\right)-7=0\)
\(\Leftrightarrow25-x^2+4x^2-4x+1-3x^2-6x+x+2-7=0\)
\(\Leftrightarrow21-9x=0\)
\(\Leftrightarrow9x=21\)
\(\Leftrightarrow x=3\)
Bài 3:
=>(x-2)(3x-5)=0
=>x=5/3 hoặc x=2
Bài 2:
\(=\dfrac{2x^3+3x^2-2x-3+2}{2x+3}=x^2-1+\dfrac{2}{2x+3}\)