K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 7 2020

a/ Bạn coi lại đề, \(2\sqrt[3]{2xy}\) hay \(2\sqrt[3]{2}.xy\)

Như đề bạn ghi thì ko rút gọn được

b/ Xét \(\frac{x}{x^4+4}=\frac{x}{x^4+4x^2+4-\left(2x\right)^2}=\frac{x}{\left(x^2+2\right)^2-\left(2x\right)^2}\)

\(=\frac{x}{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}=\frac{1}{4}\left(\frac{1}{x^2+2-2x}-\frac{1}{x^2+2+2x}\right)\)

Thay \(x=2n-1\) ta được:

\(\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{1}{4}\left(\frac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{1}{4}\left(\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)

\(\Rightarrow VT=\frac{1}{4}\left(\frac{1}{4\left(1-1\right)^2+1}-\frac{1}{4.1^2+1}+\frac{1}{4.1^2+1}-\frac{1}{4.2^2+1}+...+\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{4n^2+1}\right)=\frac{1}{4}\left(\frac{4n^2}{4n^2+1}\right)=\frac{n^2}{4n^2+1}\)

NV
8 tháng 10 2019

Đặt \(\sqrt[3]{2}=z\)

\(P=\left(\frac{2xyz}{x^2y^2-z^2}+\frac{xy-z}{2\left(xy+z\right)}\right).\frac{2xy}{xy+z}-\frac{xy}{xy-z}\)

\(=\left(\frac{4xyz}{2\left(xy-z\right)\left(xy+z\right)}+\frac{\left(xy-z\right)^2}{2\left(xy-z\right)\left(xy+z\right)}\right).\frac{2xy}{xy+z}-\frac{xy}{xy-z}\)

\(=\frac{\left(xy+z\right)^2}{2\left(xy-z\right)\left(xy+z\right)}.\frac{2xy}{\left(xy+z\right)}-\frac{xy}{xy-z}\)

\(=\frac{xy}{xy-z}-\frac{xy}{xy-z}=0\)

CÁI NÀY CŨNG KHÓ, GIÚP EM GIẢI HỘ VỚI !

17 tháng 12 2021

em ko bt

??????????

10 tháng 1 2019

a/ \(P=\frac{1}{\sqrt{xy}}\)

b/ \(x^3=8-6x\)

\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)

21 tháng 10 2016

Bài 1

a, \(\left(\frac{\sqrt{y}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{y}-1\right)}{\sqrt{y}-1}\right).\sqrt{y}\left(\sqrt{x}-1\right)\)

=\(\left(\sqrt{y}+\sqrt{x}\right).\sqrt{y}\left(\sqrt{x}-1\right)\)

b,\(\sqrt{8+2.2\sqrt{2}+1}-\sqrt{8-2.2\sqrt{2}+1}\)

=\(\sqrt{\left(\sqrt{8}+1\right)^2}-\sqrt{\left(\sqrt{8}-1\right)^2}\)

=\(\sqrt{8}+1-\left(\sqrt{8}-1\right)\)

=2

Bài 2

a, ĐKXĐ : x\(\ge\)0, x\(\pm\)1

b, Q=\(\left(\frac{\sqrt{x}\left(1+\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\left(\frac{\sqrt{x}\left(1+\sqrt{x}\right)+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\left(\frac{\sqrt{x}+x+\sqrt{x}-x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\frac{2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}-\frac{3-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)

=\(\frac{2\sqrt{x}-3+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)

=\(\frac{3\sqrt{x}-3}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)

=\(\frac{-3}{1+\sqrt{x}}\)

c, de Q = 2 => \(\frac{-3}{1+\sqrt{x}}\)=2 =>1+\(\sqrt{x}\)=-6 =>\(\sqrt{x}\)=-7 =>x vô nghiệm

21 tháng 10 2016

Bài 1: \(\left(\frac{\sqrt{xy}-\sqrt{y}}{\sqrt{x}-1}+\frac{\sqrt{xy}-\sqrt{x}}{\sqrt{y}-1}\right)\cdot\left(\sqrt{xy}-\sqrt{y}\right)\)

\(=\left(\frac{\sqrt{y}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{y}-1\right)}{\sqrt{y}-1}\right)\cdot\left(\sqrt{xy}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{y}\right)\)

\(\sqrt{9+4\sqrt{2}}-\sqrt{9-4\sqrt{2}}=\sqrt{\left(2\sqrt{2}+1\right)^2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =2\sqrt{2}+1-2\sqrt{2}+1=2\)

21 tháng 10 2016

Bài 2:

\(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(ĐK:x\ge0;x\ne1\right)\)

\(=\frac{-\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3}{\sqrt{x}+1}\)

Để Q=2

=> \(\frac{-3}{\sqrt{x}+1}=2\)

\(\Leftrightarrow2\left(\sqrt{x}+1\right)=-3\)

\(\Leftrightarrow2\sqrt{x}+2=-3\)

\(\Leftrightarrow2\sqrt{x}=-5\) (vô lí)

Vậy k có giá trị nào của x thỏa mãn Q=2