K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

\(\dfrac{x^3-9x}{15-5x}=-\dfrac{x\left(x^2-9\right)}{5\left(x-3\right)}=\dfrac{-x\left(x-3\right)\left(x+3\right)}{5\left(x-3\right)}=\dfrac{-x\left(x+3\right)}{5}=\dfrac{-x^2-3x}{5}\)

Bài 2:

Sửa đề: \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)

\(\Leftrightarrow A=\dfrac{\left(4x^2-3x-7\right)\left(2x+3\right)}{4x-7}\)

\(=\dfrac{4x^2-7x+4x-7}{4x-7}\cdot\left(2x+3\right)\)

\(=\left(x+1\right)\left(2x+3\right)\)

28 tháng 6 2017

Phân thức đại số

d: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{A}\)

hay A=x-2

30 tháng 3 2020
https://i.imgur.com/cZP2lBs.jpg
AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

\(\frac{x^2-4x+4}{4-x^2}=\frac{x^2-2.2.x+2^2}{2^2-x^2}=\frac{(x-2)^2}{(2-x)(2+x)}=\frac{(2-x)^2}{(2-x)(2+x)}=\frac{2-x}{2+x}\) (đpcm)

\(\frac{x^3-9x}{15-5x}=\frac{x(x^2-9)}{5(3-x)}=\frac{x(x-3)(x+3)}{5(3-x)}=\frac{-x(3-x)(x+3)}{5(3-x)}=\frac{-x(x+3)}{5}=\frac{-x^2-3x}{5}\) (đpcm)

7 tháng 5 2017

a. \(x^2y^3.35xy=5.7x^3y^4\)

\(\Leftrightarrow35x^3y^4=35x^3y^4\Rightarrowđpcm\)

\(b.x^2\left(x+2\right).\left(x+2\right)=x\left(x+2\right)^2.x\)

\(\Leftrightarrow x^2\left(x+2\right)^2=x^2\left(x+2\right)^2\Rightarrowđpcm\)

\(c.\left(3-x\right)\left(9-x^2\right)=\left(3+x\right)\left(x^2-6x+9\right)\)

\(\Leftrightarrow\left(3-x\right)\left(3-x\right)\left(3+x\right)=\left(3+x\right)\left(3-x\right)^2\)

\(\Leftrightarrow\left(3-x\right)^2\left(3+x\right)=\left(3-x\right)^2\left(3+x\right)\)

\(\Rightarrowđpcm\)

\(d.5\left(x^3-4x\right)=\left(10-5x\right)\left(-x^2-2x\right)\)

\(\Leftrightarrow5x^3-20x=5x^3-20x\Rightarrowđpcm\)

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

30 tháng 4 2017

a ) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\) (1)

\(\dfrac{2x^2+x-1}{6x-3}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\) (2)

Từ (1) ; (2) \(\Rightarrow\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) (đpcm)

b ) \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\) (3)

\(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\) (4)

Từ (3) và (4) \(\Rightarrow\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\) (đpcm)

13 tháng 5 2017

a) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{x^2+x+2x+2}{3\left(x+2\right)}=\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{3\left(x+2\right)}=\dfrac{x\left(x+1\right)+2\left(x+1\right)}{3\left(x+2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\left(1\right)\) \(\dfrac{2x^2+x-1}{6x-3}=\dfrac{2x^2+2x-x-1}{3\left(2x-1\right)}=\dfrac{2x\left(x+1\right)-\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\left(2\right)\) Từ (1)và (2)=> \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) b)\(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{3x\left(x+1\right)-2\left(x+1\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\left(3\right)\) \(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\left(4\right)\) Từ (3) và (4) => \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\)

26 tháng 10 2018

Ta có: \(5\left(x^3-4x\right)=5x^3-20x\)

\(\left(10-5x\right)\left(-x^2-2x\right)=-10x^2-20x+5x^3+10x^2=5x^3-20x\)

\(\Leftrightarrow5\left(x^3-4x\right)=\left(10-5x\right)\left(-x^2-2x\right)\)

\(\Leftrightarrow\dfrac{x^3-4x}{10-5x}=\dfrac{-x^2-2x}{5}\)