Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)
b, \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)
Thay \(x=-1\) vào \(B\left(x\right)\)
\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)
\(\Rightarrow x=-1\) không là nghiệm của B(x)
\(a.\)\(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
\(b.\)\(5x^3-4x=0\)
\(\Leftrightarrow x\left(5x^2-4\right)=0\)
\(c.\)\(\left(x+2\right)\left(7-4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\7-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{4}\end{cases}}}\)
\(d.\)\(2x\left(x+1\right)-x-1=0\)
\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Bạn viết rõ phần mũ và chia hoặc nhân dc ko, mik làm nhưng ko hỉu
1
a, 4x2+4x+2
= 2x2+2x2+2x+2x+2
= 2x2+(2x2+2x)+(2x+2)
= 2x2+ 2x(x+1)+2(x+1)
= 2x2+(2x+2)(x+1)
= 2x2+2(x+1)(x+1)
=2x2+2(x+1)2
Để 2x2+2(x+1)2=0
=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)
=> đa thức 4x2+4x+2 vô nghiệm
1
b, y2+6y+10
= y2+3y+3y+9+1
= y(3+y)+3(y+3)+1
= (y+3)(y+3)+1
= (y+3)2+1
Có (y+3)2\(\ge\)0;1>0
=> (y+3)2+1>0
=> y2+6y+10 vô nghiệm