K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

a) \(x-\sqrt{x}+1>0\)mà \(\sqrt{x}\)>0 => biểu thức > 0

b) \(\sqrt{x}\)\(\le x-\sqrt{x}+1\)<=> \(x-2\sqrt{x}+1\ge0\)(nhân lên do không âm)

<=> \(\left(\sqrt{x}-1\right)^2\ge0\)=> đpcm ^^

7 tháng 3 2020

Với \(0\le x;y\le1\) ta có:

\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)

Dấu "=" xảy ra <=> x = y = 1

Có: \(0\le x;y\le1\)

=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)

\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)

\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)

=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)

Dấu "=" xảy ra x<=>  = y =1

6 tháng 8 2019

Sai đề à? x = y = 1 thì VT  > 1/4

6 tháng 8 2019

Mình cũng nghĩ là đề sai,... do cái này là tài liệu trên mạng.

26 tháng 5 2018

\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge0\)(1)

\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}-1=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}=-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le0\)

\(\Rightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\) (2)

(1);(2) => đpcm

NV
13 tháng 4 2020

\(\sqrt{1-x^2}\ge0\) là hiển nhiên của căn thức

Lại có \(x^2\ge0\Rightarrow1-x^2\le1\Rightarrow\sqrt{1-x^2}\le1\)

Nguyễn Bùi Đại Hiệp

NV
13 tháng 4 2020

Do \(-1\le x\le1\Rightarrow2-x^2>0\)

BĐT tương đương:

\(\Leftrightarrow2+2\sqrt{1-x^2}\ge\left(2-x^2\right)^2\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(\Leftrightarrow2+2t\ge\left(1+t^2\right)^2\)

\(\Leftrightarrow t^4+2t^2-2t-1\le0\)

\(\Leftrightarrow\left(t-1\right)\left(t^3+t^2+3t+1\right)\le0\) (luôn đúng \(\forall t\in\left[0;1\right]\))

Dấu "=" xảy ra khi \(t=1\) hay \(x=0\)

25 tháng 7 2016

P=\(\sqrt{\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{x-\sqrt{x}-x-\sqrt{x}+x+1}\)

  =\(\sqrt{x-2\sqrt{x}+1}\)

  =\(\sqrt{\left(\sqrt{x}-1\right)^2}\)

  =\(\sqrt{x}-1\)