Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:
asinA=bsinB=csinC=b+csinB+sinC=2asinB+sinCasinA=bsinB=csinC=b+csinB+sinC=2asinB+sinC
⇒1sinA=2sinB+sinC⇒1sinA=2sinB+sinC
⇒2sinA=sinB+sinC⇒2sinA=sinB+sinC (đpcm)
b) Theo định lý sin ta có:
asinA=bsinB=csinCasinA=bsinB=csinC
⇒(asinA)2=bsinB.csinC=a2sinB.sinC⇒(asinA)2=bsinB.csinC=a2sinB.sinC
⇒sin2A=sinB.sinC⇒sin2A=sinB.sinC (đpcm)
Bài 1 :
Câu a : Theo định lý py-ta-go cho \(\Delta AHB\) ta có :
\(AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=12cm\)
\(\Rightarrow\sin B=\dfrac{AH}{AB}=\dfrac{12}{13}\approx0,92\)
Theo hệ thức lượng cho \(\Delta ABC\) ta có :
\(AH^2=BH.HC\Leftrightarrow HC=\dfrac{AH^2}{BH}=\dfrac{12^2}{5}=28,8cm\)
Theo định lý py - ta - go cho \(\Delta AHC\) ta có :
\(AC=\sqrt{AH^2+HC^2}=\sqrt{12^2+28,8^2}=31,2cm\)
\(\Rightarrow\sin C=\dfrac{AH}{AC}=\dfrac{12}{31,2}\approx0,38\)
Câu b tương tự !
Chúc bạn học tốt
Tự vẽ hình
Kẻ BH \(\perp\)AC và \(CK\perp\)AB
Tam giác AKC vuông tại K
=>CK=bsinA (1)
Tam giác BKC vuông tại K
=>CK=asinB (2)
Từ (1) (2)=>bsinA=asinB
<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)
Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)
Vậy ....
Hạ đường cao AH của △ABC
⇒AH⊥BC
Vì △ABC nhọn
⇒Điểm H nằm giữa 2 điểm B và C
Diện tích △ABC là: SABC=\(\dfrac{1}{2}\).BC.AH(1)
Áp dụng hệ thức giữa cạnh và góc vào △AHB(H=900 ),ta có:
AH=AB.\(\sin B\)(2)
Từ (1) và (2)⇒SABC=BC.AB.\(\sin B\)(đpcm)
Bài 1:
Kẻ đường cao $AH$ của tam giác $ABC$. Ta có:
\(\sin A=\frac{BH}{AB}\)
Mà \(\frac{1}{2}BH.AC=S_{ABC}\Rightarrow BH=\frac{2S_{ABC}}{AC}\)
\(\Rightarrow \sin A=\frac{2S_{ABC}}{AB.AC}\)
\(\Rightarrow \frac{BC}{\sin A}=\frac{AB.AC.BC}{2_{ABC}}\)
Hoàn toàn tương tự, kẻ đường cao từ đỉnh $B,C$ , cuối cùng ta có:
\(\frac{BC}{\sin A}=\frac{AC}{\sin B}=\frac{AB}{\sin C}=\frac{AB.BC.AC}{2S_{ABC}}\)
Vậy ta có đpcm.