Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT tam giác ΔDEI và ΔDFI có:
DE = DF (TAM GIÁC CÂN)
EI = FI (ĐƯỜNG TRUNG TUYẾN)
DI LÀ CẠNH CHUNG
==> ΔDEI = ΔDFI ( C.G.C )
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEI=ΔDFI
=>góc DIE=góc DIF=180/2=90 độ
=>góc DIE và góc DIF là những góc vuông
c: EI=FI=10/2=5cm
=>DE=căn 5^2+12^2=13cm
a/ xét /\ DEF cân tại D
=> DE = DF (t/c /\ cân )
DI là trung tuyến
=> DI vuông với FE => DIE = 90* => DIF kề bù với DIE => DIF = 90* (1)
=> I là trung điểm EF
Xét /\ DIF và /\ DIE có :
DIF = DIE (cmt )
DF =DE (cmt)
IF = IE ( cmt )
=> /\ DIE = /\ DIF (c.g.c)
b/ (1) => DIE = DIF = 90*
=> 2 góc này là hai góc vuông
c/ chịu .
4:
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
b: BH=CH=6/2=3cm
AH=căn 5^2-3^2=4cm
c: Xét ΔABC có
AH là trung tuyến
G là trọng tâm
=>A,G,H thẳng hàng
d: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
=>ΔABG=ΔACG
=>góc ABG=góc ACQ
a) Tam giác DEI và DFI có
DE = DF (gt)
EI = FI (gt)
DI chung
=> Tam giác DEI = tam giác DFI (trường hợp bằng nhau C-C-C)
b) Theo câu a, Tam giác DEI = tam giác DFI => góc DIE = góc DFI
Vì EIF thẳng hàng => góc DIE + góc DFI = 1800 , mà 2 góc này bằng nhau
=> góc DIE = góc DFI = 180o /2 = 90o (góc vuông)
c) EF = 10 => EI = 10/2 = 5
Xét tam giác DIE vuông ở I:
DI2 + EI2 = DE2 (Định lý Pitago)
DI2 + 52 = 132
DI2 = 169 - 25 =144 = 122
=> DI = 12 cm
Giải
a) Chứng minh : ΔDEI = ΔDFI.
Xét ΔDEI và ΔDFI, ta có :
DE = DF (gt)
IE = IF ( DI là trung tuyến)
DI cạnh chung.
=> ΔDEI = ΔDFI (c – c – c)
b) Các góc DIE và góc DIF :
(ΔDEI = ΔDFI)
Mà : (E, I,F thẳng hàng )
=>
c) Tính DI :
IE = EF : 2 = 10 : 2 = 5cm
Xét ΔDEI vuông tại I, ta có :
DE2 = DI2 + IE2
=> DI2 = DE2 – IE2 =132 – 52 = 144
=> DI = 12cm.
phần a,b của bạn Thư làm đúng rồi nhưng phần c, ở cuối thay số nhầm
sửa lại đoạn cuối là: DI2 = DE2 - IE2 = 169 - 25 = 144 => DI = 12
a: Xét ΔDEI và ΔDFI có
DE=DF
DI chung
IE=IF
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEI=ΔDFI
nên \(\widehat{DIE}=\widehat{DIF}\)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)
nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
a) ∆DEI = ∆DFI có:
DI là cạnh chung
DE = DF ( ∆DEF cân)
IE = IF (DI là trung tuyến)
=> ∆DEI = ∆DFI (c.c.c)
b) Vì ∆DEI = ∆DFI =>
mà = 1800 ( kề bù)
nên = 900
xét ΔDIE và ΔDIF có :
\(DB=DE\left(gt\right)\\ \widehat{DEI}=\widehat{DFI}\left(tgD\text{EF}c\text{â}nt\text{ại}D\right)\\ DI:chung\)
=> ΔDIE = ΔDIF (c.g.c )
=> góc DIE = góc DFI ( 2 góc t.ư)
có tg DEF cân tại D , đường trung tuyến DI
=> DI là đường trung trực
=> \(\widehat{DIE}=\widehat{D\text{IF}}=\dfrac{180^O}{2}=90^O\)
=> 2 GÓC là góc vuông
C) có tg DIE = tg DIF (cmt)
=> EI = FI ( 2 CẠNH t/ư)
=> EI = FI =1/2EF = 10:2 = 5 cm
có DEI là tg vuông tại I ( I là đường trung trực của tg DEF )
ADĐL P-T-G vào tg vuông DIE ta có
\(EI^2+ID^2=DE^2\\ \Leftrightarrow DE^2=12^2+5^2\\ \Leftrightarrow DE^2=169\\ \Leftrightarrow DE=13cm\)
cho tam giác ABC vuông ở A, có góc C=30 độ AH vuông góc với BC.( H thuộc BC) .Trên đoạn HC lấy điểm D sao cho HD=HB. từ C kẽ CE vuông với AD. chứng minh rằng:
A. tam giác ABD là tam giác đều
B. AH=CE
C. EH//AC
giúp mik với mik đg cần gấp