Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $ABM$ và $ECM$ có:
$BM=CM$ (do $M$ là trung điểm $BC$)
$AM=EM$ (gt)
$\widehat{AMB}+\widehat{EMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle ECM$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{ECM}$
Mà hai góc này so le trong nên $AB\parallel CE$
c.
$AB\perp AC; AB\parallel CE$
$\Rightarrow AC\perp CE$ (đpcm)
a: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔAMB=ΔEMC
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: AB//EC
c: Ta có: ABEC là hình chữ nhật
nên EC\(\perp\)AC
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta được :
\(\Leftrightarrow AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=100\)
\(\Leftrightarrow BC=10\left(cm\right)\)
Vậy \(BC=10cm\)
b) Xét \(\Delta CDA\)và \(\Delta CBA\)có :
\(\widehat{DAC}=\widehat{BAC}\left(=90^o\right)\)
\(AD=AB\)
Chung AC
\(\Rightarrow\Delta CDA=\Delta CBA\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}\widehat{DCE}=\widehat{BCE}\\CD=BC\end{cases}}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(CD=BC\)
\(\widehat{DCE}=\widehat{BCE}\)
Chung CE
\(\Rightarrow\Delta BEC=\Delta DEC\left(c-g-c\right)\left(đpcm\right)\)
c) Ta có : \(AE=2cm\)
\(AC=6cm\)
\(\Rightarrow AE=\frac{1}{3}AC\) \(\Rightarrow CE=\frac{2}{3}AC\)
\(\Rightarrow\)CA là trung tuyến \(\Delta BCD\)
\(\Rightarrow\)E là trọng tâm của \(\Delta BCD\)
\(\Rightarrow\)DE đi qua trung điểm của BC ( đpcm )
Vậy ...
Cho mik hỏi là còn cách chứng minh phần c nào khác ko ?
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
DO đó: ABEC là hình bình hành
Suy ra: AB//EC
đánh nhau ko mày
ko đánh nhau đâu bởi vì tui ko rảnh, tui hack nik ông mạnh là vì tui đâu có bít đây là nik của ông đâu, sau khi nghe ông mạnh hỏi tui mới biết thôi