K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

ở câu b , D ở đâu vậy bạn

1 tháng 11 2018

giúp em với ạ? hiccc :<

20 tháng 10 2018

a, (O) và (I) tiếp xúc trong với nhau

b, Tứ giác ADCE là hình thoi

c, Có CK ⊥ AB, ADDB

=> CK//AD mà CE//AD

=> B,K,D thẳng hàng

d, H K D ^ = H D K ^ ; I K B ^ = I B K ^

=>  H K D ^ + I K B ^ = I B K ^ + H D K ^ = 90 0

=>  I K H ^ = 90 0

Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại Fa.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)b. Cho AB = 4cm, xác...
Đọc tiếp

Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F

a.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)

b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.

c. Khi C khác O , đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM  cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN

d. Chứng minh 3 điểm: N, E, F thẳng hàng

Dùng kiến thức kì 1 ko dùng nội tiếp ai giúp em



 

0
11 tháng 12 2017

A B C D E K M I H F

a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\) 

Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.

Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.

b) Xét tam giác BEC và tam giác BHM có : 

\(\widehat{BEC}=\widehat{BHM}=90^o\)

Góc B chung

\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)

Ta có \(BK^2=BD^2=BH.BC=BE.EM\)   mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)

Vậy MK là tiếp tuyến của đường tròn tâm B.

c) 

Gọi F là giao điểm của CE với đường tròn tâm B.

Do \(BE\perp KF\)nên MB là trung trực của FK.

\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.

\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)

Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)

Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.

Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)

Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.

\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)

Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)

\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)

\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)

10 tháng 12 2017

giúp mình với!!!! ai đúng mình k cho

20 tháng 1 2021

A D E K C O O' B H

a) Ta có : OB - O'B = OO'

=> đường tròn (O) và (O'O tiếp xúc trong

b) Ta có : \(OA\perp DE\left(gt\right)\)

=> HD = HE hay H là trung điểm của DE

Theo (gt) : HA = HC

T/g ADCE có 2 đường chéo vuông góc với nhau tại trung điểm mỗi đường

=> T/g ADCE là hình thoi

c) Xét tam giác KBC có :

O'K = O'B = O'C (=bk)

\(\Rightarrow O'K=\frac{1}{2}BC\)

=> Tam giác KBC vuông tại K => \(CK\perp DB\left(1\right)\)

Xét tam giác ADB có :

OD = OA = OB ( =bk )

\(\Rightarrow OD=\frac{1}{2}AB\)

=> Tam giác ADB vuông tại D \(\Rightarrow AD\perp DB\left(2\right)\)

Từ (1) và (2) => CK // AD (*)

Theo  ( c/m câu a ) : Tứ giác ADCE là hình thoi

                              => CE // AD ( ** )

Từ (*) và (**) => CE và CK là 2 đường thẳng trùng nhau

Vậy : 3 điểm E , C , K thẳng hàng ( đpcm )

NM
20 tháng 1 2021

B A C O D E K

a. hai đường tròn tiếp xúc trong

b.ADCE là tứ giác thoi do có hai đường chéo vuông góc vcowis nhau tại trung điểm của mỗi đường

c. ta dễ thấy AD//CẺ mà AE vuông gó c với BD nên CE vuông BD

mà CK cũng vuông góc với BD nến C,K,E thẳng hàng 

d. ta có do tam giác EKD vuông nên \(HK^2=HD^2=HA.HB=HC.HB\)

do \(HK^2=HC.HB\) nên HK là tiếp tuyến của O'