Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABCΔABC có:
AB=AC(gt)AB=AC(gt)
=> ΔABCΔABC cân tại A.
=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).
Ta có:
{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).
Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)
=> ˆABM=ˆACN.ABM^=ACN^.
Xét 2 ΔΔ ABMABM và ACNACN có:
AB=AC(gt)AB=AC(gt)
ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)
BM=CN(gt)BM=CN(gt)
=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)
=> AM=ANAM=AN (2 cạnh tương ứng).
b) Theo câu a) ta có AM=AN.AM=AN.
=> ΔAMNΔAMN cân tại A.
=> ˆM=ˆNM^=N^ (tính chất tam giác cân)
Xét 2 ΔΔ vuông BMEBME và CNFCNF có:
ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)
BM=CN(gt)BM=CN(gt)
ˆM=ˆN(cmt)M^=N^(cmt)
=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)
Câu1
a) Xét ΔABM và ΔCDM có:
AM = MC ( vì M là trung điểm của AC)
BM = MD ( theo giả thiết -cách vẽ)
góc AMB = góc CMD ( đối đỉnh)
suy ra ΔABM = ΔCDM ( c-g-c)
b) => góc ABM = góc MDC ( 32 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( điều phải chứng minh)
a) xét tam giác MAD và tam giác MCB có:
MB=MD(gt)
MA=MC(gt)
AMD=BMC( 2 góc đđ)
suy ra tam giác MAD=MCB(c.g.c)
suy ra ADB=DBC suy ra AD//BC(1)
CM tương tự ta có tam giác EAN=CBN suy ra EA//BC(2)
từ (1)(2) suy ra AD//BC và EA// BC
suy ra A,D,E thẳng hàng