Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tik cho minh di tik nhieu may man ca nam do !!!!!!!!!!!!!
giup minh nhe!!! | |
tik minh nhe!!! | |
ket ban voi minh nhe!!!!! |
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
Ta có:
M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)
M=\(\frac{1.3....99}{2.4....100}\)
Lại có:
N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)
N=\(\frac{2.4....100}{3.5....101}\)
\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)
\(\Rightarrow\)M.N=\(\frac{1}{101}\)
Đề sai rồi! Sửa đề: Cho \(S_1=\dfrac{b}{a}x+\dfrac{c}{a}z...\)
Giải:
Ta có:
\(S_1+S_2+S_3=\left(\dfrac{b}{a}x+\dfrac{c}{a}z\right)+\left(\dfrac{a}{b}x+\dfrac{c}{b}y\right)\)\(+\left(\dfrac{a}{c}z+\dfrac{b}{c}y\right)\)
\(=\left(\dfrac{b}{a}x+\dfrac{a}{b}x\right)+\left(\dfrac{c}{b}y+\dfrac{b}{c}y\right)+\left(\dfrac{c}{a}z+\dfrac{a}{c}z\right)\)
\(=\left(\dfrac{b}{a}+\dfrac{a}{b}\right)x+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)y+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)z\)
Dễ thấy: \(\left\{{}\begin{matrix}\dfrac{b}{a}+\dfrac{a}{b}\ge2\\\dfrac{c}{b}+\dfrac{b}{c}\ge2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\end{matrix}\right.\)
\(\Rightarrow S_1+S_2+S_3\ge2x+2y+2z\)
\(=2\left(x+y+z\right)=2.1008=2016\)
Vậy \(S_1+S_2+S_3\ge2016\) (Đpcm)
a, Để \(B=\frac{n+3}{n+1}\)là p/s thì \(n+1\ne0\)
\(\Rightarrow n\ne1\)
Vậy \(n\ne1\)
b, Để B có giá trị nguyên thì \(n+3⋮n+1\)
\(\Rightarrow n+1+2⋮n+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
... (chỗ này bạn tự làm nha!)
1.a) Để B là phân số \(\Leftrightarrow n+5\ne0\Rightarrow n\ne5\)
b) Để b là số nguyên \(n-3⋮n+5\)
mà \(n+5⋮n+5\Rightarrow n-3-\left(n+5\right)⋮n+5\Rightarrow-8⋮n+5\) \(n+5\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
Vậy n=-4;-6;-3;-7;-1;-9;3;-13
2.
Vì\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=ct\\b=dt\end{cases}\left(t\in Z,t\ne0\right)}\)
a)\(\frac{a+c}{b+d}=\frac{ct+c}{dt+d}=\frac{c\left(t+1\right)}{d\left(t+1\right)}=\frac{c}{d}=\frac{a}{b}\)
b)\(\frac{a-c}{b-d}=\frac{ct-c}{dt-d}=\frac{c\left(t-1\right)}{d\left(t-1\right)}=\frac{c}{d}=\frac{a}{b}\)
Cái câu 2: Hoàng Nguyễn Văn làm có j đó sai sai
Đây:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)(1)
Suy ra: \(\orbr{\begin{cases}a=bk\\c=dk\end{cases}}\)
Suy ra: \(a+c=bk+dk=k\left(b+d\right)\)
Suy ra \(\frac{a+c}{b+d}=k\)(2)
Từ (1) và (2) => đpcm