K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

bài 1 : a +b , rút gọn và tính

(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b-2.1+2.-1=-2+-2 = -4

 

6 tháng 2 2022

a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)

Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.

b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)

Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.

a: Để A là phân số thì n-1<>0

hay n<>1

b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

14 tháng 2 2016

a, Để A là phân số thì n + 1 khác 0

=> n khác -1

b, Để A là số nguyên thì 5 chia hết cho n + 1

=> n + 1 thuộc {1; -1; 5; -5}

=> n thuộc {0; -2; 4; -6}

Vậy...

14 tháng 2 2016

a, n khác 1

b,n{-6;-2;0;4}

10 tháng 5 2017

Where

11 tháng 5 2017

a, A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi UCLN(a2 + a - 1,a2 + a + 1) là d

Ta có: a2 + a - 1 \(⋮\)d

          a2 + a + 1 \(⋮\)d

=> (a2 + a - 1) - (a2 + a + 1) \(⋮\)d

=> 2 \(⋮\)d => d = {1;-1;2;-2}

Mà a2 + a - 1 = a(a + 1) - 1 lẻ => d lẻ => d không thể bằng 2;-2 => d = {1;-1}

Vậy A tối giản

14 tháng 1 2018

 a) A= -a+b-c + a+b+c = 2b 
b) Vì giá trị của A = không phụ thuộc vào a hay c nên A=2b=2.(-1)= -2

a, Rút gọn 

A = ( - a - b - c ) - ( - a - b - c )

   = - a - b - c - a - b - c 

  = 2b

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

a) $A=(-a-b+c)-(-a-b-c)=-a-b+c+a+b+c=2c$

b) Khi $a=1; b=-1; c=-2$ thì: $A=2c=2(-2)=-4$