Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)
Từ (1) và(2) ta có:
\(\dfrac{2a+5b}{2c+5d}\) = \(\dfrac{3a-2b}{3c-2d}\)(đpcm)
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\) ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)
đặt a/b=c/d=k =>a=bk;c=dk
A)thay a và c vào (3a+2c)/(3b+2d)và (-5a+3c)/(-5b+3d)
+)(3bk+2dk)/(3b+2d)=k
+)(-5bk+3dk)/(-5b+3d)=k
vậy.....................................................................................................
B)thay a=bk;c=dk vào 2 biểu trên ta có
+)(bk-b)/b=k-1
+)(dk-d)/d=k-1
(bạn sai đề bài r chỗ a-d thành a-b)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
1) Ta có:
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
=>a.(c+d) = c.(a+b)
a.c+a.d = a.c+b.d
Do đó a.d=b.d
=>\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)( đpcm)
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)
\(\dfrac{-5a+3c}{-5b+3d}=\dfrac{-5bk+3dk}{-5b+3d}=k\)
=>\(\dfrac{3a+2c}{3b+2d}=\dfrac{-5a+3c}{-5b+3d}\)
b: \(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)
\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{c\left(2c-a\right)}{d\left(2d-b\right)}=\dfrac{dk}{d}\cdot\dfrac{2dk-bk}{2d-b}=k^2\)
=>\(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)