Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì số tự nhiên a chia 3 dư 1 \(\Rightarrow\)a có dạng : 3k + 1 (với k là số tự nhiên)
\(\Rightarrow5a=5\left(3k+1\right)=15k+5\)
Vì 15k chia hết cho 3; 5 chia 3 dư 2.
\(\Rightarrow\)5a chia 3 dư 2.
A = 36m + n, 3 <= n <= 35
A + 4 và do vậy cả (n + 4) chia 4 dư 3 và chia hết cho 9. Trong 4 số 9, 18, 27, 36 chỉ có 27 chia 4 dư 3 => n + 4 = 27 => n = 23
=> A = 36m + 23
=> A chia 36 dư 23
*** Học tốt ~ MDia
em giải thế này :
Giải :
Ta có : a : 4 dư 3
\(\Rightarrow\) ( a + 1 ) \(⋮\) 4
\(\Rightarrow\) ( a + 3 + 1) \(⋮\) 4
\(\Rightarrow\) ( a+ 4 ) \(⋮\) 4
a : 9 dư 5\(\Rightarrow\) ( a + 4 ) \(⋮\) 9
\(\Rightarrow\) ( a + 4 ) \(⋮\) 9 và 4
Mà : ( 9 ; 4 ) = 1
\(\Rightarrow\) ( a + 4 ) \(⋮\) 36
\(\Rightarrow\) a : 36 dư 32
A = 36m + n, 3 <= n <= 35
A + 4 và do vậy cả (n + 4) chia 4 dư 3 và chia hết cho 9. Trong 4 số 9, 18, 27, 36 chỉ có 27 chia 4 dư 3 => n + 4 = 27 => n = 23
=> A = 36m + 23
=> A chia 36 dư 23
Theo đề ta có a=5k+2
b=5q+3
13a+11b=13(5k+2)+11(5q+3)=65k+26+55q+33=(65k+55q)+59
Ta có 65k+55q chia hết cho 5 vì mỗi số hạng đều chia hết cho 5
59 chia 5 dư 4
Vậy 13a+11b chia 5 dư 4
Bạn đã học đồng dư chưa ?
Nếu rồi thì có thể tham khảo cách này :
Ta có :
\(331\text{≡}1\) ( mod 3 )
\(\Rightarrow331^{332}\text{≡}1^{332}\)( mod 3 )
\(\Rightarrow331^{332}\text{≡}1\)( mod 3 )
\(332\text{≡}2\)( mod 3 )
\(\Rightarrow332^2\text{≡}2^2\)( mod 3 )
\(\Rightarrow332^2\text{≡}4\text{≡}1\)( mod 3 )
\(\Rightarrow\left(332^2\right)^{166}\text{≡}1^{166}\)( mod 3 )
\(\Rightarrow332^{332}\text{≡}1\)( mod 3 )
\(\Rightarrow332^{333}\text{≡}1.332\text{≡}332\text{≡}2\) ( mod 3 )
\(333\text{≡}0\) ( mod 3 )
\(\Rightarrow333^{334}\text{≡}0\) ( mod 3 )
\(\Rightarrow A=331^{332}+332^{333}+333^{334}\text{≡}1+2+0\text{≡}3\text{≡}0\)( mod 3 )
Vì vậy A chia 3 dư 0 ; hay A chia hết cho 3.
Lại có :
\(A=331^{332}+332^{333}+333^{334}\)
\(=\left(...1\right)^{332}+332^{4.83}.332+333^{4.83}.333^2\)
\(=\left(...1\right)+\left(...6\right)\left(...1\right)+\left(...1\right).\left(...9\right)\)
\(=\left(...1\right)+\left(..6\right)+\left(...9\right)\)
\(=\left(...6\right)\)
A có tận cùng 6 nên A chia 5 dư 1.