K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2023

???

8 tháng 2 2023

bn ơi???

17 tháng 5 2021

`M=1/2^2+1/3^2+1/4^2+...+1/2021^2`
Vì `1/2^2>1/(2.3)`
`1/(3^2)>1/(3.4)`
`....................`
`1/2021^2>1/(2021.2022)`
`=>M>1/(2.3)+1/(3.4)+............+1/(2021.2022)`
`=>M>1/2-1/3+1/3-1/4+..........+1/2021-1/2022`
`=>M>1/2-1/2022=505/1011=1/3+56/337>1/3(1)`
Vì `1/2^2<1/(1.2)`
`1/(3^2)<1/(2.3)`
`....................`
`1/2021^2<1/(2021.2020)`
`=>M<1/(1.2)+1/(2.3)+............+1/(2020.2021)`
`=>M<1-1/2+1/2-1/3+..........+1/2020-1/2021`
`=>M<1-1/2021<1(2)`
`(1)(2)=>1/3<M<1`

+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3};\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4};\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5};...;\dfrac{1}{2021^2}=\dfrac{1}{2021.2021}>\dfrac{1}{2021.2022}\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2021.2022}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2022}=\dfrac{1}{2}-\dfrac{1}{2022}=\dfrac{505}{1011}>\dfrac{1}{3}\left(1\right)\)+Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2021^2}< \dfrac{1}{2020.2021}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020.2021}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}=1-\dfrac{1}{2021}< 1\left(2\right)\)Từ (1) và (2) suy ra: \(\dfrac{1}{3}< M< 1\)

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

3 tháng 3 2017

Bài 1:

\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)

\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)

\(\Rightarrow x.\left(1+2y\right)=30\)

\(2y\) chẵn nên \(1+2y\) lẻ

\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)

\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)

3 tháng 3 2017

Bài 2:

\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)

\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)

\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)

26 tháng 7 2017

a, Ta có : \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{4^2}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)

\(...\dfrac{1}{100^2}< \dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< 2\)

@Nguyễn Khanh

26 tháng 7 2017

b, 1 = 1
1/2 + 1/3 = 1/(1 + 1) + 1/(1 + 2) < 2/(1 + 1) = 2/2 = 1
1/4 + 1/5 + 1/6 + 1/7 = 1/(3 + 1) + 1/(3 + 2) + 1/(3 + 3) + 1/(3 + 4) < 4/(3 + 1) = 4/4 = 1
1/8 + 1/9 + ... + 1/15 = 1/(7 + 1) + 1/(7 + 2) + ... + 1/(7 + 8) < 8/(7 + 1) = 8/8 = 1
1/16 + 1/17 + ... + 1/31 = 1/(15 + 1) + 1/(15 + 2) + ... + 1/(15 + 16) < 16/(15 + 1) = 16/16 = 1
1/32 + 1/33 + ... + 1/63 = 1/(31 + 1) + 1/(31 + 2) + ... + 1/(31 + 32) < 32/(31 + 1) = 32/32 = 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 1 + 1 + 1 + 1 + 1 + 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 6 (đpcm)
@Nguyễn Khanh