K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

thầy nói đề sai rồi mà 

phải là cm ƯCLN của a và b ko lớn hơn \(\sqrt{m+n}\)

8 tháng 5 2020

Gọi \(gcd\left(m;n\right)=d\Rightarrow m=ad;n=bd\left(a,b\inℕ^∗\right)\) và \(\left(m;n\right)=1\)

Ta có:

\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{m^2+m+n^2+n}{mn}=\frac{\left(a^2+b^2\right)d+\left(a+b\right)}{abd}\)

\(\Rightarrow a+b⋮d\Rightarrow a+b\ge d\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)

Vậy ta có đpcm

25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 

p là số nguyên tố 

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n ) 

Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2

Chú ý : m – 1< m + n (1) 

Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2) 

Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2

Vậy p2 = n + 2 (Đpcm).

25 tháng 5 2016

m và n là số tự nhiên => m , n ≥ 0 
p là số nguyên tố 
Thỏa mãn p/m1 =m+n/p  <=> p2 = ( m – 1 )( m + n ) 
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 ) 
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 ) 
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2

   

 

    
25 tháng 2 2016

cho tam giác abc có ab<ac.tia phân giác của góc a cắt đường trung trực của bc tại i .qua i kẻ đường vuông gócvoi 2 cạnh của góc a ,cắt tia ab, ac theo thứ tư tại h và k ,chứng minh rằng   

a, AH=AK

b, bh=CK

C,AK=AC+AB/2,    ck=AC-AB/2