K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

Ta có : 

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}\)

\(S=\frac{2^{10}.3-3}{2^9}\)

Vậy \(S=\frac{2^{10}.3-3}{2^9}\)

20 tháng 3 2018

vận dụng 3S lên

xong tìm S nha bn ok

tại k có thời gian nên chỉ giúp thế thôi

9 tháng 8 2016

S = 10/56 + 10/140 + 10/260 + ....... + 10/1400

S = 5/28 + 5/70 + 5/130 + 5/700

3S/5 = 3/4 x 7 + 3/7 x 10 + 30/10 x 13 + ....... + 3/25 x 28

3S/5 = 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ........ + 1/25 - 1/28

3S/5 = 1/4 - 1/28

3S/5 = 3/14

S = 3/14 x 5/3

S = 5/14

Vậy S = 5/14

9 tháng 8 2016

\(S=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+\frac{10}{1400}\)

\(S=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(S=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)

\(S=5.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)

\(S=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{25.28}\right)\)

\(S=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(S=5.\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(S=5.\frac{3}{14}=\frac{15}{14}\)

Vậy \(S=\frac{15}{14}\)

31 tháng 3 2019

S= 10/56+10/140+.....+10/1400

S= 5/28+5/70+.....+5/700

S= 5/4.7+5/7.10+......+5/25.28

S=5/3( 1/4-1/7+1/7-1/10+......+1/25-1/28)

S= 5/3.(1/4-1/28)

S= 5/3. 3/14

S= 15/42

VẬY S= 15/ 42

30 tháng 6 2016

\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+.....+\frac{5}{25.28}\)

\(=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{25.28}\right)\)

\(=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{25}-\frac{1}{28}\right)\)

\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)

30 tháng 6 2016

a)Đặt A=Tổng trên, ta có:

\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)

\(2A=2+1+...+\frac{1}{2^{99}}\)

\(2A-A=\left(2+1+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)\)

\(A=2-\frac{1}{2^{100}}\)

b)có đứa làm rồi

c)Đặt C=Tổng trên 

\(3C=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{300}}\right)\)

\(3C=1+\frac{1}{3}+...+\frac{1}{3^{299}}\)

\(3C-C=\left(1+\frac{1}{3}+...+\frac{1}{3^{299}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{300}}\right)\)

\(2C=1-\frac{1}{3^{300}}\)

\(C=\frac{1-\frac{1}{3^{300}}}{2}\)

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\) b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\) c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\) b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2Bài 3: Tính giá trị của biểu thức...
Đọc tiếp

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)

Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2

Bài 3: Tính giá trị của biểu thức sau:

\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{2}{2009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{2009}\right)+1:\left(30.1009-160\right)\)

Bài 4: Tính nhanh:

\(\text{a) 35 . 34 + 35 . 86 + 67 . 75 + 65 . 45}\)

\(\text{b) 21 . }7^2-11.7^2+90.7^2+49.125.16\)

Bài 5: Thực hiện phép tinh sau:

a. \(\frac{2181.729+243.81.27}{3^2.9^2.234+18.54+162.9+723.729}\)

b. \(\frac{1}{1.2+}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

c. \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

d. \(\frac{5.4^{15}-9^9-4.3^{20}}{5.2^{19}.6^{19}-7.2^{29}.27^6}\)

giúp mk nha! nhớ viết cách làm nha!

 

13
23 tháng 10 2016

Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)

14 tháng 12 2016
A=\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+....+\frac{5}{61.66}\)A=\(\frac{5}{11}-\frac{5}{16}+\frac{5}{16}-\frac{5}{21}+...+\frac{5}{61}-\frac{5}{66}\)A=5/11-5/66A=25/66  
7 tháng 5 2019

S=3.(\(\frac{1}{10}\)+\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\))>3.(5.\(\frac{1}{14}\))>3.\(\frac{1}{3}\)=1

Vậy:S>1

18 tháng 3 2018

a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)

Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)

\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)

Từ (1) và (2) => 1 < S < 1,5 

Vậy...

b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)

\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)

Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)

Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)

Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)

Vậy...

22 tháng 6 2016

+ Ta có 3/10>3/15; 3/11>3/15; 3/12>3/15; 3/13>3/15; 3/14>3/15

=> S> 3/15+3/15+3/15+3/15+3/15=15/15=1

+ Ta có 3/10<3/8; 3/11<3/8; 3/12<3/8; 3/13<3/8; 3/14<3/8

=> S<3/8+3/8+3/8+3/8+3/8=15/8<2

=> 1<S<2
 

22 tháng 6 2016
  •  Ta có: 

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)

mà \(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)

\(\Rightarrow\frac{3}{10}+\frac{3}{11}+\frac{3}{13}+\frac{3}{14}>1\) (1)

  • Ta có: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

mà \(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)  (1)

Từ (1) và (2) => 1<S<2