K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

1) B = 31 + 32 +...+ 32010

= (3+32) + (33 + 34) + ...+ (32009 + 32010 )

= 3(1+3) + 33(1+3) + ...+ 32009(1+3)

= 3.4 + 33.4 + ...+ 32009.4

= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)

B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)

= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)

= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)

Từ (1) và (2) => đpcm

b) Làm tương tự như câu a)

3)

a) Số chữ số chia hết cho 55 từ 11 đến 10001000

\(\dfrac{1000-5}{5}\)+1 =200 (số)

b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )

=> 1015 + 8 \(\equiv\) 0 (mod 9)

=> 1015 + 8 \(⋮\) 9

Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)

c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9

=> 102010 + 8 chia hết cho 9

d) Ta có : ab + ba

= 10a + b + 10b + a

= 11a + 11b

= 11(a+b) \(⋮\) 11

e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37

Chúc bn học tốt !

30 tháng 7 2017

khó quá

30 tháng 7 2017

giup minh di ban

29 tháng 12 2016

1. Tính tổng:

 Số số hạng có trong tổng là:

 (999-1):1+1=999 (số)

Số cặp có là:

 999:2=499 (cặp) và dư một số đó là số 500

Bạn hãy gộp số đầu và số cuối:

 (999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400

Vậy tổng S1 = 50400

Mih sẽ giải tiếp nha

29 tháng 12 2016

Số tự nhiên a sẽ chia hết cho 4 vì:

 36+12=48 sẽ chia hết co 4

Số a ko chia hết cho 9 vì:

 4+8=12 ko chia hết cho 9

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

8 tháng 6 2018

c,\(10^{2010}+8\)

\(=100...0+8\)

\(=100...8\)(tổng các chữ số =9)

\(\Rightarrow10^{2010}+8⋮9\)

8 tháng 6 2018

1a.

Số nhỏ nhất: 5, số lớn nhất 1000

Vậy có: (1000 - 5): 5 + 1 = 200 (số)