Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
a,\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
=> x = 21; y = 9
b, \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> x = 38; y = 42
a) \(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{3}=\frac{5x-2y}{5.7-2.3}=\frac{87}{29}=3\)
=> x = 7 x 3 = 21 ; y = 3x3 =9
b) \(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{2.19-21}=\frac{34}{17}=2\)
=> \(x=19.2=38\) ; \(y=21.2=42\)
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
a/ Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
Suy ra: \(\frac{x}{6}=3\Rightarrow x=6\cdot3=18\)
\(\frac{y}{4}=3\Rightarrow y=3\cdot4=12\)
\(\frac{z}{3}=3\Rightarrow z=3\cdot3=9\)
Vậy x = 18, y = 12, z = 9
b/ Ta có: 3x = 2y => x/2 = y/3 => \(\frac{x^2}{2^2}=\frac{y^2}{3^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{2^2-3^2}=?\)
đề thiếu
a) đặt \(\dfrac{3}{7x}=\dfrac{8}{13y}=\dfrac{6}{19z}=k\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}\\y=\dfrac{8}{13k}\\z=\dfrac{6}{19k}\end{matrix}\right.\)
Thay vào 2x -y-z=-6, ta được:
\(2\cdot\dfrac{3}{7k}-\dfrac{8}{13k}-\dfrac{6}{19k}=-6\Leftrightarrow\left(\dfrac{6}{7}-\dfrac{8}{13}-\dfrac{6}{19}\right)\cdot\dfrac{1}{k}=-6\Leftrightarrow\dfrac{1}{k}=\dfrac{5187}{64}\Leftrightarrow k=\dfrac{64}{5187}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}=\dfrac{2223}{64}\\y=\dfrac{8}{13k}=\dfrac{399}{8}\\z=\dfrac{6}{19k}=\dfrac{819}{32}\end{matrix}\right.\)
Vậy.............
{số vẫn không đẹp mấy nhỉ T_T!!!}
\(\dfrac{3}{7}.x=\dfrac{8}{13}y=\dfrac{6}{19}z\)
\(\Rightarrow\)\(\dfrac{x}{\dfrac{7}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\Rightarrow.\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\)
AD tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}=\dfrac{2x-y-z}{\dfrac{14}{3}-\dfrac{13}{8}-\dfrac{19}{6}}=\dfrac{-6}{\dfrac{-3}{24}}=48\)
\(\Rightarrow\)x=112;y=78;z=152
Theo đề bài, ta có:
\(\frac{x}{19}=\frac{y}{21}\) và 5x-2y=87
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{19}=\frac{y}{21}=\frac{5x-2y}{5.19-2.21}=\frac{87}{53}\)
- \(\frac{x}{19}=\frac{87}{53}.19=1007\)
- \(\frac{y}{21}=\frac{87}{53}.21=\frac{1827}{53}\)
Vậy \(x=1007,y=\frac{1827}{53}\)
(Bài làm có gì ko hiueer cứ hỏi mk nhé ^...^ )
\(\dfrac{19}{21}< \dfrac{x}{y}< \dfrac{7}{6}\Rightarrow\dfrac{38}{42}< \dfrac{x}{y}< \dfrac{49}{42}\Rightarrow\dfrac{x}{y}\in\left\{\dfrac{13}{14};\dfrac{20}{21};\dfrac{41}{42}\right\}\)
Xét \(\dfrac{x}{y}=\dfrac{13}{14}\Rightarrow\dfrac{x}{13}=\dfrac{y}{14}=\dfrac{3x-2y}{39-28}=\dfrac{5}{11}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{65}{11}\\y=\dfrac{70}{11}\end{matrix}\right.\)
Xét \(\dfrac{x}{y}=\dfrac{20}{21}\Rightarrow\dfrac{x}{20}=\dfrac{y}{21}=\dfrac{3x-2y}{60-42}=\dfrac{5}{18}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{50}{9}\\y=\dfrac{35}{6}\end{matrix}\right.\)
Xét \(\dfrac{x}{y}=\dfrac{41}{42}\Rightarrow\dfrac{x}{41}=\dfrac{y}{42}=\dfrac{3x-2y}{123-84}=\dfrac{5}{39}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{205}{39}\\y=\dfrac{70}{13}\end{matrix}\right.\)