K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Đề yêu cầu làm gì bạn

22 tháng 8 2016

\(\frac{\left(a-b\right)^2}{4}\)- 1 = (\(\frac{a-b}{2}\)- 1)(\(\frac{a-b}{2}\)+ 1)

14 tháng 6 2018

a) \(\left(a+b\right)^3+\left(a+b\right)^3\)

\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)

\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)

\(=2\left(a+b\right)\)

b)  \(9x^2+6xy+y^2\)

\(=\left(3x+y\right)^2\)

\(=\left(3x+y\right)\left(3x+y\right)\)

c)  \(4x^2-25\)

\(=\left(2x\right)^2-5^2\)

\(=\left(2x+5\right)\left(2x-5\right)\)

1 tháng 11 2019

x4y4 + 64

= x4y4 + 16x2y2 + 64 - 16x2y2

= (x2y2 + 8)2 - (4xy)2

= (x2y2 - 4xy + 8)(x2y2 + 4xy + 8)

16 tháng 6 2018

\(a,\left(a+b\right)^3+\left(a-b\right)^3\)

\(=\left(a+b+a-b\right)[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\left(a^2+3b^2\right)\)

\(b,9x^2+6xy+y^2\)

\(=\left(3x\right)^2+2.3x.y+y^2\)

\(=\left(3x+y\right)^2\)

\(c,4x^2-25\)

\(=\left(2x\right)^2-5^2\)

\(=\left(2x-5\right)\left(2x+5\right)\)

13 tháng 10 2018

(x^2-x+2)^2+(x-2)^2 
= [(x^2-x+2)+(x-2)]^2-2[(x^2-x+2)*(x-2)] (áp dụng (a^2+b^2)=(a+b)^2-2ab 
=(x^2)^2- 2((x^3-3x^2+4x-4) 
=x^4-2x^3+6x^2-8x+8 
 giờ phân tích đa thức 
x^4-2x^3+6x^2+8x-8 
=(x^4-2x^3+2x^2)+(4x^2-8x+8) (cái này làm bài tập nhiêu nhìn ra nhanh) 
=[x^2(x^2-2x+2)]+4(x^2-2x+2) dẹp luôn 
=(x^2-2x+2)(x^2+4) 

13 tháng 10 2018

\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=\left[\left(x-2\right)\left(x+1\right)\right]^2+\left(x-2\right)^2\)

\(=\left(x-2\right)^2\left(x+1\right)^2+\left(x-2\right)^2\)

\(=\left(x-2\right)^2\left(x^2+2x+1\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)

11 tháng 9 2017

(a+b)3-(a-b)3=a3+3a2b+3ab2+b3-(a3-3a2b+3ab2-b3)

                    =a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3

                        =6a2b+2b3

11 tháng 9 2017

Áp dụng hđt a3-b3=(a-b)(a2+ab+b2) ấy

\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)

14 tháng 8 2018

x^4+6x^2y+9y^2-1
=(x^2+3y)^2-1
=(x^2+3y+1)(x^2+3y-1)

17 tháng 8 2018

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)