K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

Chọn D.

+) (m + 2)x ≤ m + 1 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

+) 3m(x - 1) ≤ -x - 1 ⇔ 3mx - 3m + x + 1 ≤ (3m + 1)x ≤ 3m - 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hai bất phương trình (m + 2)x ≤ m + 1 và 3m(x - 1) ≤ -x - 1 tương đương khi và chỉ khi hai bất phương trình có cùng tập nghiệm khi đó:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

⇔ (m + 1)(3m + 1) = (m + 2)(3m - 1)

⇔ 3 m 2  + m + 3m + 1 = 3 m 2  - m + 6m - 2

⇔ 3 m 2  + m + 3m + 1 - 3 m 2  + m - 6m + 2 = 0

⇔ -m + 3 = 0

⇔ m = 3 (thỏa mãn)

6 tháng 11 2017

Chọn A.

Bất phương trình ( m 2  + m + 1)x - 5m ≥ ( m 2  + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

4 tháng 8 2018

Chọn B

17 tháng 10 2017

Chọn A.

Bất phương trình ( m 2  + m + 1)x - 5m ≥ ( m 2  + 2)x - 3m - 1 ⇔ (m - 1)x ≥ 2m - 1 vô nghiệm khi

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 1)

18 tháng 1 2022

a = -2 < 0 rồi, xét Δ không dương nữa là xong

12 tháng 1 2019

Chọn B

TH1.Nếu a-1=0 hay a =1 thì

(1) thành: 2 > 0 ( luôn đúng mọi x)  Tập nghiệm của bất phương trình T = R

(2) thành: 2x+1> 0 hay x> -1/2 Tập nghiệm của bất phương trình 

Vậy a= 1 không thỏa yêu cầu bài toán.

TH2. Nếu a+1= 0 hay a= -1thì

(1) thành: -2x=4>0 hay x< 2. Tập nghiệm của bất phương trình T2 = (-; 2)

(2) thành: 3> 0  luôn đúng Tập nghiệm của bất phương trình T= R

Vậy a=  -1  không thỏa yêu cầu bài toán.

TH3.  

(1) : (a-1) x> a-3 và (2) : (a+1) x> a-2

Hai bất phương trình tương đương

6 tháng 10 2019

Phương trình vô nghiệm khi Δ' < 0

Giải sách bài tập Toán 10 | Giải sbt Toán 10

NV
20 tháng 1 2021

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)