Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(x\le-1\)
ta có phương trình \(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow-x-1-2x+5-x+9=10\)
\(\Leftrightarrow-4x=-3\Leftrightarrow x=\frac{3}{4}\left(\text{loại}\right)\)
TH2: \(-1< x\le\frac{5}{2}\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1-2x+5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)
Th3: \(\frac{5}{2}< x\le9\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(\text{loại}\right)\)
th4:\(x>9\)thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5+x-9=10\)
\(\Leftrightarrow4x=23\Leftrightarrow x=\frac{23}{4}\left(\text{loại}\right)\)
Vậy x=5/2
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
\(A=\frac{2\left|x+5\right|+11}{\left|x+5\right|+4}=\frac{2\left|x+5\right|+8+3}{\left|x+5\right|+4}=2+\frac{3}{\left|x+5\right|+4}\)
Ta có : \(\left|x+5\right|+4\ge4\Rightarrow\frac{3}{\left|x+5\right|+4}\le\frac{3}{4}\)
\(\Rightarrow A=2+\frac{3}{\left|x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)
Dấu ''='' xảy ra khi x = -5
Vậy GTLN của A bằng 11/4 tại x = -5
\(13^{\left(x-2\right)\left(2x-5\right)}=1=13^0\)
\(\Rightarrow\left(x-2\right)\left(2x-5\right)=0\Leftrightarrow x=2;x=\frac{5}{2}\)
Ta có với mọi \(a\in Z\)thì \(a^0=1\)
\(\Rightarrow13^{\left(x-2\right)\left(2x-5\right)}=13^0=1\)
\(\Rightarrow\left(x-2\right)\left(2x-5\right)=0\)
\(\Rightarrow x-2=0\)hoặc \(2x-5=0\)
\(TH1:\)\(x-2=0\)
\(\Rightarrow x=2\)
\(TH2:\)\(2x-5=0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\frac{5}{2}\)
Vậy \(x\in\left\{2;\frac{5}{2}\right\}\)