Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)<2003/2004\)
Ta có :=2/2.(1/1.3+1/3.5+1/5.7+...+1/n.(n+2)
=1/2.(2/1.3+2/3.5+2/5.7+...+2/n.(n+2)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/n-1/n+2)
=1/2.(1-1/n+2)
=1/2.(n+2/n+2-1/n+2)
=1/2.(n+2-1/n+2)
=1/2.n+1/n+2
=n+1/(n+2).2
Vì: n+1/(n+2).2<2003/2004
Suy ra:n+1/(n+2).2=x/2004
Suy ra:(n+2).2=2004
n+2 =1002
n =1000
Vậy n bằng 1000
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
A = 1 /1.2 + 1/ 2.3 + 1 /3.4 + . . . + 1/ 49.50 + 1/ 50.51
A = 2 − 1/ 1.2 + 3 − 2 /2.3 + 4 − 3 /3.4 + . . . + 50 − 49 /49.50 + 51 − 50/ 50.51
A = 1 − 1/ 2 + 1/ 2 − 1 /3 + 1 /3 − 1/ 4 + . . . + 1 /50 − 1 /51
A=1-1/51
A=50/51
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
1/3.5+1/5.7+1/7.9+...+1/(2x+1)(2x+3)=5/31
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=5/31
1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3=5/31:1/2
1/3-1/2x+3=10/31
1/2x+3=1/3-10/31
1/2x+3=1/63
suy ra : 2x+3=63
2x=63-3
2x=60
x=60:2
x=30
vay x=30
nhớ **** cho mình nha
a)
\(\dfrac{1}{3}-\dfrac{1}{4}=\dfrac{4}{12}-\dfrac{3}{12}=\dfrac{1}{12}\)
b)\(\dfrac{1}{4}-\dfrac{1}{5}=\dfrac{5}{20}-\dfrac{4}{20}=\dfrac{1}{20}\)
c) Ta có: \(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\cdot\left(n+1\right)}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
\(=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{9\cdot11}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{9\cdot11}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{11-9}{9\cdot11}\right)\)
\(=\frac{1}{2}\left(\frac{3}{1\cdot3}-\frac{1}{1\cdot3}+\frac{5}{3\cdot5}-\frac{3}{3\cdot5}+...+\frac{7}{5\cdot7}-\frac{5}{5\cdot7}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\cdot\frac{10}{11}\)
\(=\frac{10}{22}=\frac{5}{11}\)
Ta có :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(=\)\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\)\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\)\(\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(=\)\(\frac{1}{2}.\frac{10}{11}\)
\(=\)\(\frac{5}{11}\)
Bạn làm đúng òi
Chúc bạn học tốt ~
Đây là bài toán tìm tổng dãy số có quy luật.
Để ý thấy rằng \(\frac{1}{n\left(n+2\right)}=\frac{1}{2}.\frac{2}{n\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)\)
Vậy thì \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{n+2}\right)=\frac{5}{36}\Rightarrow\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{1}{n+2}=\frac{1}{18}\Rightarrow n=16.\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{n\left(n+2\right)}=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{12}{36}-\frac{1}{n+2}=\frac{5}{36}\)
\(\frac{1}{n+2}=\frac{7}{36}\)
\(\Rightarrow\frac{7}{7\left(n+2\right)}=\frac{7}{36}\)
\(7\left(n+2\right)=36\)
n + 2 = 36/7
n = 36/7 - 2
( Tự tính KQ nha )