K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Ta có: 

\(S=3.2^0-3^1+3.2^1-3^2+3.2^2+3.2^3-3^3+3.2^4-3^4+...-3^7+3.2^{10}+3.2^{11}-3^8+3.2^{12}\)

\(=3.\left(2^0+2^1+2^2+2^3+2^4+...+2^{10}+2^{11}+2^{12}\right)-\left(3^1+3^2+3^3+...+3^7+3^8\right)\)

Đặt: \(A=2^0+2^1+2^2+...+2^{11}+2^{12}\)

=> \(2.A=2^1+2^2+2^3+...+2^{12}+2^{13}\)

=> \(2.A-A=2^{13}-2^0\)

\(\Rightarrow A=2^{13}-1=8191\)

Đặt: \(B=3^1+3^2+3^3+...+3^8\)

 \(\Rightarrow3.B=3^2+3^3+3^4+...+3^9\)

=> \(3B-B=3^9-3^1=19680\)

=> \(2B=19680\Rightarrow B=9840\)

=> S=3.A-B=3.8191-9840=14733

19 tháng 6 2016

đề sai à

17 tháng 6 2019

S = 1 + 1/3 + 1/9 + 1/27 +.....+ 1/2187

S x 3 = 3 + 1 + 1/3 + 1/9 + 1/27 +........+ 1/729

S x 3 - S = ( 3 + 1 + 1/3 + 1/9 + 1/27 +........+ 1/729 ) - ( 1 + 1/3 + 1/9 + 1/27 +.....+ 1/2187 )

S x 3 - S = 3 - 1/2187

S x 3 - S = 6560/2187

S = 6560/2187 : 2

Vậy S = 6560/4374

16 tháng 7 2015

a) 2^7 . 9^3 / 6^5 . 8^2

= 2^7 . 3^9 / 2^5 . 3^5 . 2^6

= 2^-4 . 3^4

18 tháng 8 2018

\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)

\(3S=3+1+\frac{1}{3}+...+\frac{1}{3^6}\)

\(3S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(2S=3-\frac{1}{3^7}\)

\(S=\frac{3-\frac{1}{3^7}}{2}\)

18 tháng 8 2018

S= 1+ \(\frac{1}{3}\)\(\frac{1}{9}\)+...+ \(\frac{1}{729}\)\(\frac{1}{2187}\).

=> S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)\(\frac{1}{3^7}\).

=>3S= 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)\(\frac{1}{3^6}\).

=> 3S- S=( 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)\(\frac{1}{3^6}\))-( 1+ \(\frac{1}{3}\)\(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)\(\frac{1}{3^7}\)).

=> 2S= 3- \(\frac{1}{3^7}\).

=> 2S= 3- \(\frac{1}{2187}\).

=> 2S= \(\frac{6560}{2187}\).

=> S= \(\frac{6560}{2187}\): 2.

=> S= \(\frac{3280}{2187}\).

Vậy S= \(\frac{3280}{2187}\).

25 tháng 7 2018

Câu a

\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)

Câu b

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)

\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)

26 tháng 7 2018

\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)

\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)

\(\Rightarrow\)\(3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)

\(\Rightarrow\)\(3S-S=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(\Rightarrow\)\(2S=1-\frac{1}{3^7}\)

\(\Rightarrow\)\(S=\frac{1-\frac{1}{3^7}}{2}\)

26 tháng 7 2018

\(S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3S=1+\frac{1}{3}+...+\frac{1}{3^6}\)

\(3S-S=\left(1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(2S=1-\frac{1}{3^7}\)

\(S=\frac{1-\frac{1}{3^7}}{2}\)