K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2023

Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^3}+\dfrac{1}{3^5}+...+\dfrac{1}{3^{47}}+\dfrac{1}{3^{49}}+\dfrac{1}{3^{51}}\)

Và \(B=\dfrac{1}{3^2}+\dfrac{1}{3^4}+\dfrac{1}{3^6}+...+\dfrac{1}{3^{46}}+\dfrac{1}{3^{48}}+\dfrac{1}{3^{50}}\)

Ta có:

\(9A=3+\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{45}}+\dfrac{1}{3^{47}}+\dfrac{1}{3^{49}}\)

\(9A-A=\left(3+\dfrac{1}{3}+...+\dfrac{1}{3^{47}}+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{49}}+\dfrac{1}{3^{51}}\right)\)

\(8A=3-\dfrac{1}{3^{51}}\)

\(A=\dfrac{3-\dfrac{1}{3^{51}}}{8}\)

\(9B=1+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{44}}+\dfrac{1}{3^{46}}+\dfrac{1}{3^{48}}\)

\(9B-B=\left(1+\dfrac{1}{3^2}+...+\dfrac{1}{3^{46}}+\dfrac{1}{3^{48}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{48}}+\dfrac{1}{3^{50}}\right)\)

\(8B=1-\dfrac{1}{3^{50}}\)

\(B=\dfrac{1-\dfrac{1}{3^{50}}}{8}\)

Suy ra

\(-\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}=B-A=\dfrac{1-\dfrac{1}{3^{50}}}{8}-\dfrac{3-\dfrac{1}{3^{51}}}{8}\)

\(=\dfrac{\left(1-\dfrac{1}{3^{50}}\right)-\left(3-\dfrac{1}{3^{51}}\right)}{8}=\dfrac{-2-\dfrac{1}{3^{50}}+\dfrac{1}{3^{51}}}{8}=\dfrac{-2+\dfrac{-3^{51}+3^{50}}{3^{101}}}{8}\)

\(=\dfrac{-2+\dfrac{3^{50}\left(-3+1\right)}{3^{101}}}{8}=\dfrac{-2-\dfrac{2}{3^{51}}}{8}=-\dfrac{2\left(1+\dfrac{1}{3^{51}}\right)}{8}=-\dfrac{1+\dfrac{1}{3^{51}}}{4}\)

2 tháng 3 2017

Từ dãy trên ta có:

(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\))                  < vì không có cách nhập hỗn số nên mình đổi ra phân số >

= 2 + 3 + 4 + 5 + 6 + ..........................+ 51

Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số 

Chia ra : 50 : 2 = 25 cặp 

ta có( 51 + 2 ) x 25 =1325

Vậy tổng trên có kết quả bằng 1325       (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )

28 tháng 2 2017

\(=\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+...+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(=2+3+...+51\)

\(=\frac{\left(2+51\right)50}{2}\)

\(=1325\)

3 tháng 3 2016

Ta có : 

\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)

\(\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+\left(3\frac{3}{4}+\frac{1}{4}\right)+...+\left(49\frac{49}{50}+\frac{1}{50}\right)+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(2+3+4+5+...+49+50+51\)

\(\left(\frac{51-2}{1}+1\right).\frac{51+2}{2}\)

\(50.26,5\)

= 1325

27 tháng 2 2017

\(1\dfrac{1}{2}+2\dfrac{2}{3}+3\dfrac{3}{4}+...+50\dfrac{50}{51}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{51}\)

\(=\left(1\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3\dfrac{3}{4}+\dfrac{1}{4}\right)+...+\left(50\dfrac{50}{51}+\dfrac{1}{51}\right)\)

\(=2+3+4+...+51\)

\(=\dfrac{50\left(51+2\right)}{2}\)

=1325

19 tháng 2 2017

1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)

=(1\(\frac{1}{2}\)+\(\frac{1}{2}\))+(2\(\frac{2}{3}\)+\(\frac{1}{3}\))+(3\(\frac{3}{4}\)+\(\frac{1}{4}\))+.......+(50\(\frac{50}{51}\)+\(\frac{1}{51}\))

=2+3+4+.....+51

=1325

Vậy:1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)=1325

Học Tốt!vui

20 tháng 2 2017

\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+4\frac{4}{5}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{51}\)

\(=1+\frac{1}{2}+2+\frac{2}{3}+3+\frac{3}{4}+...+50+\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)

\(=\left(1+2+3+...+50\right)+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)+...+\left(\frac{50}{51}+\frac{1}{51}\right)\)

\(=\frac{50.51}{2}+1+1+1+...+1\) ( có 50 số 1 )

\(=1275+50\)

\(=1325\)

12 tháng 2 2016

kq cuối nk =1326 (vừa nhìn nhầm )

12 tháng 2 2016

=2550 nha (hình như thế) 

18 tháng 4 2021

\(B=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+....+\dfrac{1}{3^{50}}-\dfrac{1}{3^{51}}\)

=> \(3B=-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{49}}-\dfrac{1}{3^{50}}\)

=> \(4B=-1-\dfrac{1}{3^{51}}\)

=> \(B=\dfrac{-1-\dfrac{1}{3^{51}}}{4}\)