Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2...2 ( 22...2 có 16 số 2)
A = 2 + 22 + 23 + 24 + ... + 216
2A = 22 + 23 + 24 + 25 + ... + 217
2A - A = ( 22 + 23 + 24 + 25 + ... + 217) - ( 2 + 22 + 23 + 24 + ... + 216)
A = 217 - 2
b, B = 1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28
1/2 x B = 1/2 + 1/6 + 1/12 + ... + 1/56
1/2 x B = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/7x8
1/2 x B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
1/2 x B = 1 - 1/8 = 7/8
B = 7/8 : 1/2
B = 7/8 x 2 = 7/4
a, A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2...2 ( 22...2 có 16 số 2)
A = 2 + 22 + 23 + 24 + ... + 216
2A = 22 + 23 + 24 + 25 + ... + 217
2A - A = ( 22 + 23 + 24 + 25 + ... + 217) - ( 2 + 22 + 23 + 24 + ... + 216)
A = 217 - 2
b, B = 1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28
1/2 x B = 1/2 + 1/6 + 1/12 + ... + 1/56
1/2 x B = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/7x8
1/2 x B = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8
1/2 x B = 1 - 1/8 = 7/8
B = 7/8 : 1/2
B = 7/8 x 2 = 7/4
\(A=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}.4\frac{1}{2}-2.2\frac{1}{3}\right):\frac{7}{4}\)
\(A=\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}.\frac{9}{2}-2.\frac{7}{3}\right):\frac{7}{4}\)
\(A=\frac{59}{15}-\left(\frac{21}{2}-\frac{14}{3}\right):\frac{7}{4}\)
\(A=\frac{59}{15}-\frac{35}{6}:\frac{7}{4}\)
\(A=\frac{59}{15}-\frac{10}{3}\)
\(A=\frac{3}{5}\)
1/2.2 + 1/3.3 + 1/4.4 +....+ 1/99.99 + 1/100.100
= 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/98.99 + 1/99.100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100
= 1/1 - 1/100
= 99/100
=> 3x + 1/5 = 136 - 8/10
=> 3x + 1/5 = 125,2
=> 3x = 125
=> x = 125/3
tick đúng cho mình néh !
Đặt A = \(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{2.2.2.....2}\)
= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\)
=> 2A = \(2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\right)\)
= \(2\times\frac{1}{2}+2\times\frac{1}{2^2}+2\times\frac{1}{2^3}+...+2\times\frac{1}{2^{50}}\)
= \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\)
Lấy 2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}\right)\)
A = \(1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{50}}\)
= \(1-\frac{1}{2^{50}}\)
Vậy \(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+...+\frac{1}{2.2.2.....2}\)= \(1-\frac{1}{2^{50}}\)