Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=-7\cdot\left[16+\left(-36\right):\left(-9\right)\right]+125=-77\cdot20+125=-140+125=-15\)
ta có: \(2x-1=2\left(x-3\right)+5\)
để \(2x-1⋮x-3\Rightarrow2\left(x-3\right)+5⋮x-3\\ m\text{à }x.nguy\text{ê}n\Rightarrow x-3nguy\text{ê}n\\ \Rightarrow x-3\in\text{Ư}\left(5\right)=\left\{-5;5;1;-1\right\}\)
ta có bảng sau :
x-3 | -5 | 5 | -1 | 1 |
x | -2 | 2 | 4 | 8 |
\(\Leftrightarrow2.\left(x-3\right)+5⋮x-3\)
\(do2.\left(x-3\right)⋮x-3\)
\(\Leftrightarrow5⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow x\in\left\{-2;2;4;8\right\}\)
= (-5/7 + -2/7) + (8/11 + 3/11) + 1/2 = -1 + 1 + 1/2 = 1/2
\(a,-2.\left(x+7\right)+3.\left(x-2\right)=-2\)
\(-2x-14+3x-6=-2\)
\(x-20=-2\)
\(x=-2+20\)
\(x=18\)
\(b,-7-2x=-37-\left(-26\right)\)
\(-7-2x=-11\)
\(-2x=-11+7\)
\(-2x=-4\)
\(x=2\)
\(c,\left(3x+9\right).\left(11-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+9=0\\11-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=11\end{cases}}}\)
\(\orbr{\begin{cases}3x+9=0\\11-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=-9\\x=11\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=11\end{cases}}\)
<=>\(\left|\dfrac{1}{2}-2x\right|=\dfrac{5}{3}< =>\left[{}\begin{matrix}\dfrac{1}{2}-2x=\dfrac{5}{3}\\\dfrac{1}{2}-2x=\dfrac{-5}{3}\end{matrix}\right.< =>\left[{}\begin{matrix}2x=\dfrac{-7}{6}\\2x=\dfrac{13}{6}\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{-7}{12}\\x=\dfrac{13}{12}\end{matrix}\right.\)
\(\left|\dfrac{1}{2}+2x\right|+\dfrac{2}{3}=\dfrac{7}{3}\)
\(\left|\dfrac{1}{2}+2x\right|=\dfrac{7}{3}-\dfrac{2}{3}=\dfrac{5}{3}\)
⇔\(\left[{}\begin{matrix}\dfrac{1}{2}+2x=\dfrac{5}{3}\\\dfrac{1}{2}+2x=-\dfrac{5}{3}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\dfrac{7}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ...