Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(V=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}+\dfrac{1}{2187}\)
\(\Rightarrow3V=3.\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}+\dfrac{1}{2187}\right)\)
\(\Rightarrow3V=1+\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+...+\dfrac{1}{729}\right)\)
\(\Rightarrow3V=1+V-\dfrac{1}{2187}\)
\(\Rightarrow2V=1-\dfrac{1}{2187}\)
\(\Rightarrow V=\dfrac{1093}{2187}\).
A = 1/3 + 1/9 + 1/27 + 1/81 +...+1/729 + 1/2187
3A = 1 + 1/3 + 1/9 + 1/27 + 1/81 +...+1/729
=>2A = 1 - 1/2187
=> A = ....
lấy MS chung là 2187, ta có:
729 + 243 + 81 + 9 + 3 + 1
________________________ = 1066/2187
2187
<=>3x+9x+27x+81x+243x+729x+2187x = 9837
<=>3279 x = 9837
<=>x=3
S = 1 + \(\frac{1}{3}\)+ \(\frac{1}{9}\)+ \(\frac{1}{27}\)+...+ \(\frac{1}{2187}\)
3S = 3 + 1 + \(\frac{1}{3}\)+ \(\frac{1}{9}\)+...+ \(\frac{1}{729}\)
3S - S = 3 - \(\frac{1}{2187}\)
2S = \(\frac{6560}{2187}\)
S = \(\frac{6560}{2187}\): 2
S = \(\frac{6560}{4374}\)
thay 1thành 3/3,1/3 thành 1/31,1/9 thành 1/32,1/27 thành 1/33,rồi cứ thế tiếp tục
xong rồi thì cộng lại như phân số
#)Giải :
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(A=\frac{2187}{2187}+\frac{729}{2187}+\frac{243}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}\)
\(A=\frac{3037}{2187}\)
#~Will~be~Pens~#
A=1/3+1/9+1/27+...+1/2187
=1/3+1/3^2+1/3^3+...+1/3^7
-->3A=1+1/3+1/3^2+...+1/3^6
-->3A-A=(1+1/3+1/3^2+...+1/3^6) - (1/3+1/3^2+1/3^3+...+1/3^7)
-->2A=1- 1/3^7
-->A=1093/2187
Tham khảo tại đây
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Chúc học tốt!
Đặt \(B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(\Rightarrow3B=3.\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\)
\(\Rightarrow3B-B=\left(3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)-\)\(\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow2B=3-\frac{1}{2187}\)
\(\Rightarrow B=\left(3-\frac{1}{2187}\right):2\)
\(\Rightarrow B=\frac{6560}{2187}\)
Chắc sai !!!