K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

Chỗ 12 phải là 1.2 chứ ! 

20 tháng 7 2015

\(\frac{4}{5}\)                           

19 tháng 6 2021

   \(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

9 tháng 11 2020

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{1}-\frac{1}{6}\)

\(=\frac{5}{6}\)

13 tháng 7 2021

\(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)\(\frac{1}{4.5}\)\(+\)\(\frac{1}{5.6}\)

\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(\frac{1}{4}\)\(-\)\(\frac{1}{5}\)\(+\)\(\frac{1}{5}\)\(-\)\(\frac{1}{6}\)

\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{6}\)

\(=\)\(\frac{5}{6}\)

Hok tốt

=1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100

=1/2-1/100

=49/100

AH
Akai Haruma
Giáo viên
4 tháng 1 2023

Lời giải:

Gọi tổng trên là $A$

$A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}$

$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$

$=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}$

26 tháng 7 2017

Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Leftrightarrow A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{49}{100}\)

26 tháng 7 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

10 tháng 6 2020

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{11\cdot12}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)

10 tháng 6 2020

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)

9 tháng 5 2017

Ta có :

\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+..............+\dfrac{1}{99.100}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)

10 tháng 8 2019

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)

2 tháng 8 2018

Sử dụng công thứ \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

2 tháng 8 2018

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5}\)

\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)

\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}\)

\(\frac{1313}{1212}:x=\frac{4}{5}+\frac{1}{5}\)

\(\frac{1313}{1212}:x=1\)

\(x=\frac{1313}{1212}:1\)

\(x=\frac{13}{12}\)

Lời giải 

\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}\)

\(\frac{1313}{1212}:x=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}\)

\(\frac{1313}{1212}:x=\frac{4}{5}+\frac{1}{5}\)

\(x=\frac{1313}{1212}:1\)

\(x=\frac{13}{12}\)