Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+.....+99}+\frac{1}{50}\)
Đặt E = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+....+99}\)
\(E=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)
\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
E = 49/100 : 1/2 = 49/50
Vậy \(S=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
= 2*(1/1 - 1/2 + 1/2 - ...... - 1/100) + 1/50
= 2*(1 - 1/100) + 1/50
= 2*99/100 + 1/50
= 99/50 + 1/50 = 2
= 2*(1/1 - 1/2 + 1/2 - ...... - 1/100) + 1/50
= 2*(1 - 1/100) + 1/50
= 2*99/100 + 1/50
= 99/50 + 1/50 = 2
Vô fx sửa lại đi bạn, nhìn vầy khó nhìn quá!!