Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=.....
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\)=\(\frac{2016}{2017}\)
=\(1-\frac{1}{x+1}=\frac{2016}{2017}\)
=\(\frac{x}{x+1}=\frac{2016}{2017}\)
=>x=2016
vậy..............
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(B=1.2+2.3+3.4+...+49.50\)
\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(=49.50.51\)
\(B=\frac{49.50.51}{3}=49.50.17\)
\(50^2.A-\frac{B}{17}=49.50-49.50=0\)
Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
Vì \(\frac{49}{50}
a ) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
Vi \(1-\frac{1}{50}< 1\)
=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)
b ) Dat B = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}\)
Ta co :
\(\frac{1}{5^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
...
\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)
Vay \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2012}-\frac{1}{2013}\)
=> B < \(\frac{1}{4}-\frac{1}{2013}\)
Ma \(\frac{1}{4}-\frac{1}{2013}< \frac{1}{4}\)
=> B < \(\frac{1}{4}\)
KL : \(Vay\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}< \frac{1}{4}\)
Ta có:
1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
=1-1/50
Vì 1-1/50<1 nên 1/1.2+1/2.3+1/3.4+...+1/49.50<1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)\(=1-\frac{1}{50}