Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XIN LỖI NHA NHƯNG VỀ TRƯỚC KO THỂ LỚN HƠN ĐƯỢC ĐÂU .THÔNG CẢM CHO MÌNH .
lưu ý : đúng k nếu sai ,hãy k nếu đúng .
các bạn cố tìm câu trả lời giúp mik , mik đang cần gấp lắm
Gọi tổng trên là A, ta có:
a) A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(< \frac{1}{1}-\frac{1}{2008}\)
\(< 1-\frac{1}{2008}\)
Vì 1 - 1/2008 < 1 nên A < 1 - 1/2008 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}< 1\)
câu b đề sao đấy bạn
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
Ukm, đc, HS gjỏj Toán lah đax, chjnh lah ng đc gjảj 3 HS gjỏi, nhỉk
chứng minh đúng ko