Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0
\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0
\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0
\(\Rightarrow\)-2x+64=0
\(\Rightarrow\)-2x=-64
\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)
\(\Rightarrow x=32\)
2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50
\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50
\(\Rightarrow\)-62x+12=50
\(\Rightarrow\)-62x=50-12
\(\Rightarrow\)-62x=38
\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)
1) Ta có: \(5\left(x-3\right)\left(x-7\right)-\left(5x+1\right)\left(x-2\right)=-8\)
\(\Leftrightarrow5\left(x^2-10x+21\right)-\left(5x^2-10x+x-2\right)=-8\)
\(\Leftrightarrow5x^2-50x+105-5x^2+9x+2+8=0\)
\(\Leftrightarrow-41x=-115\)
hay \(x=\dfrac{115}{41}\)
2) Ta có: \(x\left(x+1\right)\left(x+2\right)-\left(x+4\right)\left(3x-5\right)=84-5x\)
\(\Leftrightarrow x\left(x^2+3x+2\right)-\left(3x^2+7x-20\right)=84-5x\)
\(\Leftrightarrow x^3+3x^2+2x-3x^2-7x+20-84+5x=0\)
\(\Leftrightarrow x^3=64\)
hay x=4
3) Ta có: \(\left(9x^2-5\right)\left(x+3\right)-3x^2\left(3x+9\right)=\left(x-5\right)\left(x+4\right)-x\left(x-11\right)\)
\(\Leftrightarrow9x^3+27x^2-5x-15-9x^3-27x^2=x^2-x-20-x^2+11x\)
\(\Leftrightarrow-5x-15=10x-20\)
\(\Leftrightarrow-5x-10x=-20+15\)
\(\Leftrightarrow x=\dfrac{-5}{-15}=\dfrac{1}{3}\)
a) Thực hiện rút gọn VT = -2x – 64
Giải phương trình -2x – 64 = 0 thu được x = -32.
b) Thực hiện rút gọn VT = -62 x +12
Giải phương trình -62x + 12 = -50 thu được x = 1.
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
a) Ta có: \(A=\left(4-x\right)\left(16+4x+x^2\right)-\left(4-x\right)^3\)
\(=64-x^3+\left(x-4\right)^3\)
\(=64-x^3+x^3-12x^2+48x-64\)
\(=-12x^2+48x\)
b) Ta có: \(B=\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(=27x^3+8-27x^3+8\)
=16
c) Ta có: \(C=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)^2\)
\(=x^3+1-x\left(x^2+2x+1\right)\)
\(=x^3+1-x^3-2x^2-x\)
\(=-2x^2-x+1\)
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)