K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

Ta có : \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\Leftrightarrow10ab+10ac+b^2+bc=10ab+10b^2+ca+cb\)

\(\Leftrightarrow\)9ac=9b2 \(\Leftrightarrow\)\(\frac{a}{b}=\frac{b}{c}\)

1 tháng 9 2019

\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)

\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)

\(=2k^2-k^2=k^2\)(1)

và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)

6 tháng 4 2016

=> (a-b)(10b+c) = (10a+b)(b-c)  => 10ab-10b2+ac-bc = 10ab-10ac+b2-bc   =>  10ab-10ab-10b2-b2 = -10ac-ac-bc+bc 

  => -10b2-b2 = -10ac-ac  =>   -11b2 = -11ac   => b2 = ac      => \(\frac{b}{a}=\frac{c}{b}\)

12 tháng 8 2016

3/5 nha ban

Ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=5k\\c=7k\end{matrix}\right.\)

\(\Rightarrow a-2b+3c=3k-2.5k+3.7k=3k-10k+21k=14k=14\Rightarrow k=1\)\(\Rightarrow\left\{{}\begin{matrix}a=3k=3\\b=5k=5\\c=7k=7\end{matrix}\right.\)

\(\Rightarrow32a+10b^2-c^3=32.3+10.5^2-7^3=96+250-343=3\)Đề sai bạn nhé!

26 tháng 2 2020

Thanks nhìu nha