Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F(x) = 2x6 + x2 + 3x4 + 1
Ta có: 2x6 \(_{\ge}\)0
x2 \(\ge\)0
\(3x^4\ge0\)
=> 2x6 + x2 + 2x4 + 1 \(\ge1\)
Vậy \(2x^6+x^2+3x^4+1\)không có nghiệm
Chúc bạn học tốt
\(F\left(x\right)=2x^6+x^2+3x^4+1\)
Ta có:
\(2x^6\ge0;x^2\ge0;3x^4\ge0\)
\(\Rightarrow2x^6+x^2+3x^4+1\ge1\)
Vậy đa thức F(x) không có nghiệm
thay x = 5 vào đa thức ta được:
4.5^2 - 7.5 + C
<=> 4.25 - 35 + C = 0
<=> 100 - 35 + C = 0
<=> 65 + C = 0
<=> C = 0 - 65
<=> C = -65
Vậy hệ số tự do C = - 65 để có nghiệm bằng 5
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
`a,`
`Q(x)=` \(\dfrac{1}{2}x+\dfrac{2}{3}x^3-\dfrac{1}{3}x+\dfrac{5}{2}x^2-\dfrac{2}{3}x^3+1\)
`Q(x)=`\(\left(\dfrac{2}{3}x^3-\dfrac{2}{3}x^3\right)+\dfrac{5}{2}x^2+\left(\dfrac{1}{2}x-\dfrac{1}{3}x\right)+1\)
`Q(x)=`\(\dfrac{5}{2}x^2+\dfrac{1}{6}x+1\)
`b,` Bậc của đa thức: `2`
Hệ số cao nhất: `5/2`
Hệ số tự do: `1`
`c,`
`Q(-6)=`\(\dfrac{5}{2}\cdot\left(-6\right)^2+\dfrac{1}{6}\cdot\left(-6\right)+1\)
`= 5/2*36 -1+1 = 90-1+1=90`
`Q(1)= 5/2*1^2+1/6*1+1 = 5/2+1/6+1=8/3+1=11/3`
`Q(2)=5/2*2^2+1/6*2+1=5/2*4+1/3+1=10+1/3+1=31/3+1=34/3`
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)
\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)
Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1
b) Khi \(f\left(-1\right)\) thì đa thức trở thành:
\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)
\(f\left(-1\right)=2+4+-1+1+1\)
\(f\left(-1\right)=7\)
c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm