Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Khi \(W_đ=3W_t\Rightarrow W=4W_t\Rightarrow x=\pm\frac{A}{2}\)
+ Khi \(W_đ=\frac{1}{3}W_t\Rightarrow W=\frac{4}{3}W_t\Rightarrow x=\pm\frac{\sqrt{3}}{2}A\)
Ta có véc tơ quay như sau:
Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.
\(t=\frac{30}{360}T=\frac{1}{12}.2=\frac{1}{6}s\)
\(S=\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right).10=\left(\sqrt{3}-1\right).5\)
Tốc độ trung bình: \(v=\frac{S}{t}=\left(\sqrt{3}-1\right).30=21,96\)(cm/s)
Thời gian ngắn nhất cần tìm là thời gian chất điểm đi từ
hoặc
Quãng đường cần tìm là :
1) \(W_đ=W_t\Rightarrow W=W_đ+W_t=2W_t\)
\(\Rightarrow \dfrac{1}{2}kA^2=2.\dfrac{1}{2}kx^2\)
\(\Rightarrow x = \pm\dfrac{A}{\sqrt 2}\)
Như vậy, trong 1 chu kì có 4 lần động năng bằng thế năng được biểu diễn bằng véc tơ quay như sau.
Đó là các vị trí ứng với véc tơ quay đi qua M, N, P, Q
Như vậy, thời gian giữa 2 lần liên tiếp động năng bằng thế năng là 1/4T
\(\Rightarrow \dfrac{T}{4}=0,2\Rightarrow T = 0,8s\)
\(W_đ=nW_t\)
\(\Rightarrow W = W_đ+W_t=nW_t+W_t=(n+1)W_t\)
\(\Rightarrow \dfrac{1}{2}kA^2=(n+1).\dfrac{1}{2}kx^2\)
\(\Rightarrow \dfrac{A}{x}=\pm\sqrt{n+1}\)
\(\Rightarrow \dfrac{\omega^2. A}{-\omega^2.x}=\pm\sqrt{n+1}\)
\(\Rightarrow \dfrac{a_{max}}{a}=\pm\sqrt{n+1}\)
+ Quãng đường vật đi được trong nửa chu kì là S = 2A = 18 cm, vậy A = 9 cm.
Đáp án C
Trong 1 chu kì, thời gian mà động năng nhỏ hơn (hoặc không nhỏ hơn) thế năng là: T/2 = 2/2 = 1s
Chọn B.