Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Pha ban đầu bằng 0 nên véc tơ quay xuất phát tại M.
Khi vật qua x = 4 cm thì véc tơ quay quay đến N hoặc P.
Cho véc tơ quay xuất phát ở M quay ngược chiều kim đồng hồ. Khi nó quay được 1004 vòng thì nó qua N và P là 2008 lần, lần cuối cùng nó quay từ M đến N.
Vậy thời gian tương ứng: \(t=1004T+\dfrac{60}{360}T=(1004+\dfrac{1}{6}).\dfrac{2\pi}{10\pi}=200,83(s) \)
Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)
+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)
+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)
t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.
\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)
tại \(t=0\) vật tại \(x=5\sqrt{3}\)
\(v>0\)
\Rightarrow \(s=4A+17-5\sqrt{3}\)
sử dung công thức
\(s=2A.\sin\left(\frac{\omega.t1}{2}\right)\)
\Rightarrow t1 = ?
vậy khoảng thời gian nhỏ nhất là \(t=T+t1\)
Vận tốc dương khi vật chuyển động theo chiều dương trục toạ độ.
Gia tốc có hướng về VT cân bằng, nên để gia tốc dương thì vật đi từ biên độ âm về VTCB.
Do vậy, vận tốc và gia tốc đều có giá trị dương khi vật đi từ biên độ âm về VTCB.
Thời gian ngắn nhất là 1/4 T.
a. Chu kì: \(T=2\pi/5\pi=0,4s\)
Vị trí xuất phát, lấy t = 0 thay vào pt ta được \(x=2,5cm\)
b. Mình làm ý 1 thôi nhé, các ý khác tương tự.
Biểu diễn dao động bằng véc tơ quay ta được
Véc tơ quay xuất phát từ M ( do pha ban đầu là \(-\pi/3\)), thời điểm đầu tiên x = 0 ứng với véc tơ quay đến N
Góc quay: \(\alpha=60+90=150^0\)
Thời gian: \(t=\dfrac{150}{360}T=\dfrac{150}{360}.0,4=5/3(s)\)
a)
\(T=\frac{2\pi}{\omega}=0,4\left(s\right)\\ x_0=5cos\left(\frac{-\pi}{3}\right)=2,5\left(cm\right)\)
b)
Thời gian ngắn nhất vật qua vị trí:
\(x=0\Rightarrow t=\frac{5T}{12}=\frac{1}{6}\left(s\right)\)
\(x=-2,5\sqrt{3}=-\frac{5\sqrt{3}}{2}\Rightarrow t=\frac{7T}{12}=\frac{7}{30}\left(s\right)\)
\(x=5\Rightarrow t=\frac{T}{6}=\frac{1}{15}\left(s\right)\)
\(x=-2,5\)(lần 2)\(\Rightarrow t=\frac{5T}{6}=\frac{1}{3}\left(s\right)\)
\(x=-2,5\sqrt{3}\)(lần 2)\(\Rightarrow t=\frac{3T}{4}=\frac{3}{10}\left(s\right)\)