Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{4}=\dfrac{1}{12}+\dfrac{1}{d'}\Rightarrow d'=6cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{12}{6}\Rightarrow h'=1cm\)
xétΔOAB và ΔOA'B'
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\)⇒\(\dfrac{AB}{A'B'}=\dfrac{8}{OA'}\left(1\right)\)
xétΔOFI và ΔF'A'B'
\(\dfrac{OI}{A'B'}=\dfrac{12}{OF'+OA'}\)(2)
từ (1) và (2)⇒\(\dfrac{8}{OA'}=\dfrac{12}{12+OA'}\)
⇔8.(12+OA')=12.OA'
⇔96+8.OA'=12.OA'
⇔8.OA'-12.OA'=96
⇔-4.OA'=96
⇔OA'=-24 cm
thay OA'=-24 vào (1)
\(\dfrac{1}{A'B'}=\dfrac{8}{-24}\)⇒A'B'=\(-\dfrac{1}{3}\) cm
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\Rightarrow d'=\dfrac{36}{7}cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{8}{7}cm\approx1,14cm\)
Khoảng cách từ ảnh đến vật:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{15}+\dfrac{1}{d'}\Rightarrow d'=30cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{15}{30}\Rightarrow h'=6cm\)
Vậy ảnh thật, ngược chiều và lớn hơn vật.
Ảnh ảo, cùng chiều với vật và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính hội tụ:
\(\dfrac{1}{f}=\dfrac{1}{d}-\dfrac{1}{d'}\Rightarrow\dfrac{1}{18}=\dfrac{1}{12}-\dfrac{1}{d'}\Rightarrow d'=36cm\)
Độ cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{6}{h'}=\dfrac{12}{36}\Rightarrow h'=18cm\)