Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Gọi 4 số tự nhiên liên tiếp la a+1;a+2;a+3;a+4
-n nếu ếu a chia hết cho 4 ( dpcm)
-nếu a chia 4 dư 1 thi a có dạng :a=4k+1
Xét :a+3=4k+1+3=4k+4=4.(k+1) chia hết cho 4 (1)
-nếu a chia 4 dư 2 thì a có dạng a=4k+2
Xét a+2=4k+2+2=4k+4=4.(k+1) chia hết cho 4 (2)
-nếu a chia 4 dư 3 thì a có dạng a=4k+3
Xét a+1=4k+3+1=4k+4=4.(k+1) chia hết cho 4 (3)
Từ (1) ; (2) và (3) suy ra dpcm
b) cho 1 số tự nhiên a bất kì thì 4 số TN liên tiếp là a -> a+ 1 ; a + 2 ; a + 3
tổng = a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4(a + 1) + 2 chia 4 dư 2
hoặc cho 1 số tự nhiên a - 1 bất kì thì 4 số TN liên tiếp là a - 1 -> a ; a + 1 ; a + 2
tổng = a - 1 + a + a + 1 + a + 2 = 4a + 2 chia 4 dư 2
=> dù cho chọn 4 số TN Liên tiếp thì tổng của chúng khi chia 4 luôn dư 2
bài này trong sbt 6 giữa giai xem mà mấy bài này gọi a là ra dễ lắm
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2
TH1 nếu a chia hết cho 3
=> a có dạng 3k
=>a+1=3k+1(ko chia hết cho 3)
=>a+2=3k+2(ko chia hết cho 3)
Vậy trong 3 số chỉ có duy nhất 1 số a chia hết cho 3
TH2 a+1 chia hết cho 3
=>a+1 có dạng 3k
=>a=3k-1 (ko chia hết cho 3)
=>a+2=3k+1(ko chia hết cho 3)
=>Vậy trong 3 số chỉ có duy nhất 1 số a+1 chia hết cho 3
TH3 (làm tương tự nha bạn)
b,Tick rồi mình làm tiếp cho
1. Gọi ba số tự nhiên liên tiếp là n , n + 1 và n + 2
=> Tổng của chúng là : n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3 ( đpcm )
2 . Trong 3 số tự nhiên liên tiếp có 1 trong 3 dạng 3k ; 3 + 1 ; 3k + 3
Vậy có 1 số chia hết cho 3 là 3k
2, gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
tổng của 3 số : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3( a.1 ) là 1 số chia hết cho 3
vậy , tổng 3 số tự nhiên liên tiếp chia hết cho 3
hok tốt#